
? packages and editable installation

Code that we can import
□ current directory
□ core packages e.g. time, math, os, …
□ installed packages

e.g. numpy, scipy, … installed via pip / conda / …
(saved in system location e.g. /usr/lib64/python3.11/site-packages/

on Pythonpath => Python can find it)

2

Importable code

Pip editable installation

3

Navigate into the 2024-Heraklion-ODD folder (terminal)
Run pip list. What do you see?

Run pip install -e . (full stop = this directory)

Run pip list again. What has changed?

Run main.py again from scripts/, which imports the
make_example_potion function. Does it work now?

—> An editable installation lets you use your own code as any other package
you installed

Advantages:

1. you can import the objects in the package from any directory
(no longer bound to the directory which contains the package)

2. at the same time you can keep your project in your current directory and
all changes are immediately available (no re-install required)

3. you use your code as someone else would use it, which forces you to
write it in a more usable way

4

Pip editable install

Editable installation: install your package with -e (--editable) option

pip install -e <path-to-package>
(cd <path-to-package>; conda develop .)

5

Other option: if package is included in PyPI

pip install numpy

Other option: install from a VCS like git

pip install git+https://github.com/<user>/<package-name>.git

Options to install a package using pip

Importing own project

6

Installing other packages

pip
standard package manager for

Python

can install packages from PyPI
(Python Package Index) or from VCS
e.g. github

conda
open source package manager/

environment manager

can install packages which were
reviewed by Anaconda (not all)

You can install Python packages in your terminal using a package manager

? how to develop code with editable install

None*

* for developing code if you are used to working with .py files.
(you won’t be able to use this if you only develop in jupyter)

Changes to your workflow

8

Write your function
Write the last remaining potion making function
we need before sharing the package

Exercise:
Create a branch with a unique name
Follow the instructions in Exercise 3 Editable Installation
Workflow to write and test a function to make a “Python
expert” potion
Create a Pull Request

9

Notes

10

None* **

* for developing code if you are used to working with .py files.
(you won’t be able to use this if you only develop in jupyter)

** you will have to do some setup steps at the start and regular
updates

Changes to your workflow II

11

start with package setup

start without package setup

à for a small, short project, a package setup might take longer
(but it will still be much better to pick back up later)

Short projects

12

develop codesetup

set up folders
set up special files

set up new .py files
do editable pip install

time

develop code

start with package setup

start without package setup

à for a longer project, having a structure from the start will pay off!
especially when you want to share or publish your code

develop

13

time

setup develop

fix
impor
ts

search
for code

restruct
ure

Longer (=research) projects
publish

publish (restructure, fix)

Github/Gitlab
perfectly fine for publishing publication code
perfectly fine for hosting research group code

PyPi: Python Package Index
If you want others to use your library, you must have your code
on PyPi to make it easier for others to download and use it

Publishing code

14

break now?

? package structure – required files

Package structure

17

Here is an example of a Python
package structure
□ What do you notice about

the files and the structure?
□ What is familiar /

unfamiliar?

my_project/
├── pyproject.toml
├── src/
│ ├── package_name/
│ │ ├── __init__.py
│ │ ├── analysis.py
│ │ ├── constants.py
│ │ ├── data_preprocessing.py
│ │ ├── data_visualization.py
│ │ ├── file_io.py
│ │ ├── models.py

18

>>>

Notes

my_project/
├── pyproject.toml
├── src/
│ ├── package_name/
│ │ ├── __init__.py
│ │ ├── analysis.py
│ │ ├── constants.py
│ │ ├── data_preprocessing.py
│ │ ├── data_visualization.py
│ │ ├── file_io.py
│ │ ├── models.py

Python package structure

* pick one from choosealicense.com

Files that make a package (for your
own use)
□ src / <name-of-package>

□ __init__.py

□ Modules
□ pyproject.toml

20

>>>

pyproject.toml
The pyproject.toml file holds static information (meta data) about the package

□ general information

□ build information

□ dependencies

[project]
name = "brewing"
version = "0.1.0"
description = "a python package for brewing potions"
authors = [{name = "A. SPP", email="a.spp@magic.ac.uk"}]
license = {file = "LICENSE"}
readme = "README.md"
requires-python = ">=3.11"
dependencies = ["numpy", "matplotlib >= 3.0.0", "pytest"]

[tool.setuptools]
packages = ["brewing"]

[build-system]
requires = ["setuptools>=42"]
build-backend = "setuptools.build_meta"

21

>>>

pyproject.toml
The pyproject.toml file holds static information (meta data) about the package

Dependencies:

□ Declare what you import in
the code à it will not work
in other places otherwise!

□ don’t just copy „pip list“!

□ Whenever you add a new
package, add it to the
requirements

□ Can also go into separate
requirements.txt file

[project]
name = "brewing"
version = "0.1.0"
description = "a python package for brewing potions"
authors = [{name = "A. SPP", email="a.spp@magic.ac.uk"}]
license = {file = "LICENSE"}
readme = "README.md"
requires-python = ">=3.11"
dependencies = ["numpy", "matplotlib >= 3.0.0", "pytest"]

[tool.setuptools]
packages = ["brewing"]

[build-system]
requires = ["setuptools>=42"]
build-backend = "setuptools.build_meta"

src and __init__.py

* pick one from choosealicense.com

src folder holds your code
__init__.py designates your
folder with .py files are a package
for pyproject.toml

contents of __init__.py file à

Like in many other areas in life,
code is often organized by purpose or
thematically

Separate code into files/folders by
□ purpose / theme – data handling,

preprocessing, plotting, …
□ type – i/o config, parameters,

functions

Single responsibility principle

23

Organising file contents

my_project/
├── pyproject.toml
├── src/
│ ├── package_name/
│ │ ├── __init__.py
│ │ ├── analysis.py
│ │ ├── constants.py
│ │ ├── data_preprocessing.py
│ │ ├── data_visualization.py
│ │ ├── file_io.py
│ │ ├── models.py

Within-module standard order:

24

Organising file contents
1. imports

- standard Python library
- installed packages
- local modules

2. constants
DATA_DIR = "/path/to/data"

3. classes and functions
class ClassName:
def func_name():

4. main execution block
if __name__ == "__main__":

The setup steps only take time at the start
□ Set up the project structure, then never worry about it again
□ Set your imports, then never worry about them again
□ The more projects you set up like this, the easier it will become.

In the end it‘s faster than solving a single import error.

You unlock so many abilities with only a little effort
□ sharing code, publishing, endlessly looking for functions or files,

avoiding import errors when moving files, …

If you continue coding after inside but especially outside academia,
this will be the standard you will encounter.

26

All the advantages

Our goal
1. Local importing

à review and best practices
2. Packages and editable installations

à avoid importing errors
3. Repo structure

à organize folders and files in a standardized way
4. Environments

à avoid and alleviate package installation problems
5. Accessibility

à make code more readable, understandable and usable

break now?

? repo structure

