173 lines
4.5 KiB
Plaintext
173 lines
4.5 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"execution": {
|
||
|
"iopub.execute_input": "2024-03-04T09:40:28.904Z",
|
||
|
"iopub.status.busy": "2024-03-04T09:40:28.896Z",
|
||
|
"iopub.status.idle": "2024-03-04T09:40:28.978Z",
|
||
|
"shell.execute_reply": "2024-03-04T09:40:28.967Z"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import numpy as np"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"execution": {
|
||
|
"iopub.execute_input": "2024-03-04T10:02:39.062Z",
|
||
|
"iopub.status.busy": "2024-03-04T10:02:39.057Z",
|
||
|
"iopub.status.idle": "2024-03-04T10:02:39.068Z",
|
||
|
"shell.execute_reply": "2024-03-04T10:02:39.071Z"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"n_series = 32\n",
|
||
|
"len_one_series = 5*2**20\n",
|
||
|
"time_series = np.random.rand(n_series, len_one_series)\n",
|
||
|
"gap = 16*2**10"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"execution": {
|
||
|
"iopub.execute_input": "2024-03-04T10:02:41.027Z",
|
||
|
"iopub.status.busy": "2024-03-04T10:02:41.020Z",
|
||
|
"iopub.status.idle": "2024-03-04T10:02:41.036Z",
|
||
|
"shell.execute_reply": "2024-03-04T10:02:41.040Z"
|
||
|
},
|
||
|
"scrolled": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(f'Size of one time series: {int(time_series[0].nbytes/2**20)} M')\n",
|
||
|
"print(f'Size of collection: {int(time_series.nbytes/2**20)} M')\n",
|
||
|
"print(f'Gap size: {int(gap*8/2**10)} K')\n",
|
||
|
"print(f'Gapped series size: {int(time_series[0, ::gap].nbytes/2**10)} K')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"execution": {
|
||
|
"iopub.execute_input": "2024-03-04T10:06:08.461Z",
|
||
|
"iopub.status.busy": "2024-03-04T10:06:08.459Z",
|
||
|
"iopub.status.idle": "2024-03-04T10:06:08.466Z",
|
||
|
"shell.execute_reply": "2024-03-04T10:06:08.468Z"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# compute a Taylor-like series\n",
|
||
|
"def taylor(time_series, mean, gap):\n",
|
||
|
" for row, ts in enumerate(time_series):\n",
|
||
|
" for pwr in range(1,20):\n",
|
||
|
" mean[row] += (ts[::gap]**pwr).sum()\n",
|
||
|
" return mean\n",
|
||
|
" "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"execution": {
|
||
|
"iopub.execute_input": "2024-03-04T10:06:08.461Z",
|
||
|
"iopub.status.busy": "2024-03-04T10:06:08.459Z",
|
||
|
"iopub.status.idle": "2024-03-04T10:06:08.466Z",
|
||
|
"shell.execute_reply": "2024-03-04T10:06:08.468Z"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def taylor_improved(time_series, mean, gap):\n",
|
||
|
" y = time_series[:,::gap].copy()\n",
|
||
|
" for row, ts in enumerate(y):\n",
|
||
|
" for pwr in range(1,20):\n",
|
||
|
" mean[row] += (ts**pwr).sum()\n",
|
||
|
" return mean"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# verify that they yield the same results\n",
|
||
|
"out1 = taylor(time_series, np.zeros(n_series), gap)\n",
|
||
|
"out2 = taylor_improved(time_series, np.zeros(n_series), gap)\n",
|
||
|
"np.testing.assert_allclose(out1, out2)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"execution": {
|
||
|
"iopub.execute_input": "2024-03-04T10:06:14.959Z",
|
||
|
"iopub.status.busy": "2024-03-04T10:06:14.956Z",
|
||
|
"iopub.status.idle": "2024-03-04T10:06:17.437Z",
|
||
|
"shell.execute_reply": "2024-03-04T10:06:17.443Z"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"mean = np.zeros(n_series, dtype='float64')\n",
|
||
|
"%timeit taylor(time_series, mean, gap)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"execution": {
|
||
|
"iopub.execute_input": "2024-03-04T10:06:20.056Z",
|
||
|
"iopub.status.busy": "2024-03-04T10:06:20.053Z",
|
||
|
"iopub.status.idle": "2024-03-04T10:06:21.695Z",
|
||
|
"shell.execute_reply": "2024-03-04T10:06:21.700Z"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"mean = np.zeros(n_series, dtype='float64')\n",
|
||
|
"%timeit taylor_improved(time_series, mean, gap)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.12.5"
|
||
|
},
|
||
|
"nteract": {
|
||
|
"version": "0.28.0"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|