ASPP 2024 material
This commit is contained in:
		
						commit
						1f6bc07c51
					
				
					 90 changed files with 91689 additions and 0 deletions
				
			
		
							
								
								
									
										
											BIN
										
									
								
								exercises/pandas_intro/.DS_Store
									
										
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								exercises/pandas_intro/.DS_Store
									
										
									
									
										vendored
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							|  | @ -0,0 +1,227 @@ | |||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "560f48cd", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# Exercise: Have a look at the neural data using Pandas" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "id": "f7777604", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "import pandas as pd\n", | ||||
|     "\n", | ||||
|     "# Set some Pandas options: maximum number of rows/columns it's going to display\n", | ||||
|     "pd.set_option('display.max_rows', 1000)\n", | ||||
|     "pd.set_option('display.max_columns', 100)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "6494fb41", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# Load electrophysiology data" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 2, | ||||
|    "id": "9ca3bec6", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "df = pd.read_csv('../../data/QC_passed_2024-07-04_collected.csv')" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "0d78a63e", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 1. How many rows/columns does the data set have?" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "4b68e5a6", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "0fab635e", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 2. Display the first 5 rows of the DataFrame" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "4adcd5bf", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "deecdfa0", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 3. Display the names and dtypes of all the columns" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "64df567c", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "411f4228", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 4. Display the unique values of the `high K concentration` and of the `treatment` columns" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "b90ce541", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "1e395e8d", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 5. Display the main statistics of the `max_spikes` column" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "e2b86159", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "c8c9f6b2", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 6. Show all the rows where the max number of spikes is larger than 50" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "c449e9ff", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "ce9ff32b", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 7. Display the main statistics of `'max_spikes'`, for the rows where `high K concentration` is `8 mM` and `15 mM` (separately)\n", | ||||
|     "\n", | ||||
|     "Are the distributions any different?" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "8b84faa2", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "8b2d1c2b", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 8. Display the statistics of `max_spikes` when `high K concentration` is `8 mM`, and the maximum number of spikes is <= 100\n", | ||||
|     "\n", | ||||
|     "Does that change your conclusion?" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "1201f7d1", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "6dbbf6c8", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 9. Transform the `high K concentration` column into a numerical column\n", | ||||
|     "\n", | ||||
|     "a) Discard the last three characters of the columns (`' mM'`)\n", | ||||
|     "\n", | ||||
|     "b) Use `.astype(float)` to convert to floating point numbers\n", | ||||
|     "\n", | ||||
|     "c) Save the result in a column `K (mM)`" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "1cf5c15d", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "ecc0cad1", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3 (ipykernel)", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.11.3" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 5 | ||||
| } | ||||
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										227
									
								
								exercises/pandas_intro/pandas_intro.ipynb
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										227
									
								
								exercises/pandas_intro/pandas_intro.ipynb
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,227 @@ | |||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "560f48cd", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# Exercise: Have a look at the neural data using Pandas" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "id": "f7777604", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "import pandas as pd\n", | ||||
|     "\n", | ||||
|     "# Set some Pandas options: maximum number of rows/columns it's going to display\n", | ||||
|     "pd.set_option('display.max_rows', 1000)\n", | ||||
|     "pd.set_option('display.max_columns', 100)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "6494fb41", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# Load electrophysiology data" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 2, | ||||
|    "id": "9ca3bec6", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "df = pd.read_csv('../../data/QC_passed_2024-07-04_collected.csv')" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "0d78a63e", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 1. How many rows/columns does the data set have?" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "4b68e5a6", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "0fab635e", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 2. Display the first 5 rows of the DataFrame" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "4adcd5bf", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "deecdfa0", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 3. Display the names and dtypes of all the columns" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "64df567c", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "411f4228", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 4. Display the unique values of the `high K concentration` and of the `treatment` columns" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "b90ce541", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "1e395e8d", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 5. Display the main statistics of the `max_spikes` column" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "e2b86159", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "c8c9f6b2", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 6. Show all the rows where the max number of spikes is larger than 50" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "c449e9ff", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "ce9ff32b", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 7. Display the main statistics of `'max_spikes'`, for the rows where `high K concentration` is `8 mM` and `15 mM` (separately)\n", | ||||
|     "\n", | ||||
|     "Are the distributions any different?" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "8b84faa2", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "8b2d1c2b", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 8. Display the statistics of `max_spikes` when `high K concentration` is `8 mM`, and the maximum number of spikes is <= 100\n", | ||||
|     "\n", | ||||
|     "Does that change your conclusion?" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "1201f7d1", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "6dbbf6c8", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## 9. Transform the `high K concentration` column into a numerical column\n", | ||||
|     "\n", | ||||
|     "a) Discard the last three characters of the columns (`' mM'`)\n", | ||||
|     "\n", | ||||
|     "b) Use `.astype(float)` to convert to floating point numbers\n", | ||||
|     "\n", | ||||
|     "c) Save the result in a column `K (mM)`" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "1cf5c15d", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "ecc0cad1", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3 (ipykernel)", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.11.3" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 5 | ||||
| } | ||||
							
								
								
									
										1487
									
								
								exercises/pandas_intro/pandas_intro_solution.ipynb
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										1487
									
								
								exercises/pandas_intro/pandas_intro_solution.ipynb
									
										
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue