ASPP 2024 material
This commit is contained in:
commit
1f6bc07c51
90 changed files with 91689 additions and 0 deletions
|
@ -0,0 +1,227 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "560f48cd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Exercise: Have a look at the neural data using Pandas"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "f7777604",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"# Set some Pandas options: maximum number of rows/columns it's going to display\n",
|
||||
"pd.set_option('display.max_rows', 1000)\n",
|
||||
"pd.set_option('display.max_columns', 100)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6494fb41",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Load electrophysiology data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "9ca3bec6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.read_csv('../../data/QC_passed_2024-07-04_collected.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0d78a63e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. How many rows/columns does the data set have?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4b68e5a6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0fab635e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Display the first 5 rows of the DataFrame"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4adcd5bf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "deecdfa0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 3. Display the names and dtypes of all the columns"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "64df567c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "411f4228",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 4. Display the unique values of the `high K concentration` and of the `treatment` columns"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b90ce541",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1e395e8d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 5. Display the main statistics of the `max_spikes` column"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e2b86159",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c8c9f6b2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 6. Show all the rows where the max number of spikes is larger than 50"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c449e9ff",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ce9ff32b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 7. Display the main statistics of `'max_spikes'`, for the rows where `high K concentration` is `8 mM` and `15 mM` (separately)\n",
|
||||
"\n",
|
||||
"Are the distributions any different?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8b84faa2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8b2d1c2b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 8. Display the statistics of `max_spikes` when `high K concentration` is `8 mM`, and the maximum number of spikes is <= 100\n",
|
||||
"\n",
|
||||
"Does that change your conclusion?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1201f7d1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6dbbf6c8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 9. Transform the `high K concentration` column into a numerical column\n",
|
||||
"\n",
|
||||
"a) Discard the last three characters of the columns (`' mM'`)\n",
|
||||
"\n",
|
||||
"b) Use `.astype(float)` to convert to floating point numbers\n",
|
||||
"\n",
|
||||
"c) Save the result in a column `K (mM)`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1cf5c15d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ecc0cad1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue