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Things one thinks about when thinking about data
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• Size
• Access ease
• Access time

Storage

• Efficient 
processing 
(no for-loops!)

• Organizing data so 
that analyses are 
easy

Processing

• Versioning
• Lineage tracing 

(which script / 
other data was 
used to generate 
this?)

• Ease of sharing

Reproducibility and 
collaboration
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Hands-on
What data structure would you use to represent…
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Hands-on
What data structure would you use to represent…

July 2024, CC BY-SA 4.0 Data, v1.0 5

A sound wave?



Hands-on
What data structure would you use to represent…
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A sound wave? NumPy array



Hands-on
What data structure would you use to represent…
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Phone book entries?



Hands-on
What data structure would you use to represent…
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Pandas DataFramePhone book entries?



Hands-on
What data structure would you use to represent…
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Friendship relations?



Hands-on
What data structure would you use to represent…
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Adjacency matrix 
(array)

Dictionary

Implemented as

Friendship relations? Graph



You develop your code on a small data set, how is it going to 
scale to the complete data set? 

July 2024, CC BY-SA 4.0 Data, v1.0 11

N data points,
Processing time T

10x N data points
Processing time -> ?

Development data Real data

We’re interested in orders of magnitude



How performance scales: big-O
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Big-O class What we call it Time increase, when 
data increases 10x

O(1) constant 1x time

O(n) linear 10x time

O(n2) quadratic 100x time

O(n * log n) linearithmic ~10-20x time

O(log n) logarithmic ~1-2x time Ti
m

e

Input size, n

O(n)

O(log n)

O(1)

O(n log n)O(n2)O(2n)



Hands-on: Operations on lists
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Hands-on: Operations on lists
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Big-O class What we call it Time increase, when 
data increases 10x

O(1) constant 1x time

O(n) linear 10x time

O(n2) quadratic 100x time

O(n * log n) linearithmic ~10-20x time

O(log n) logarithmic ~1-2x time Ti
m

e

Input size, n

O(n)

O(log n)

O(1)

O(n log n)O(n2)O(2n)

Big-O class Operation on lists that scales this way

O(1) Getting an element by its index

O(n) Summing elements in list

O(n2) Computing distance between all pairs of 
elements in the list 

O(n * log n) Sorting the list

O(log n) Searching an element in a sorted list



Example: Find common words

Given two lists of words, extract all the words that are in common
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Expected result: ['apple', 'orange', 'banana']



Implementation with two for-loops
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What is the big-O complexity of this implementation?



Implementation with two for-loops
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What is the big-O complexity of this implementation?
N * N  ~  O(N2) 



Implementation with sorted lists
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What is the big-O complexity of this implementation? 



Implementation with sorted lists
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What is the big-O complexity of this implementation?
2 * (N * log(N)) + 2 * N  ~ O(N log N) 



Implementation with sets
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What is the big-O complexity of this implementation?



Implementation with sets
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What is the big-O complexity of this implementation?
N + N ~ O(N)



Basic reference sheet about Python data structures 
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See also: https://wiki.python.org/moin/TimeComplexity

Getting an element by index O(1)

Appending O(1)

Inserting an element at index O(n)

Sorting O(n log n)

Finding an element
(e.g., “if element in my_list: …”)

O(n)

Lists: collection of ordered, 
arbitrary data

Inserting O(1)

Finding a value by key
(e.g., “if element in my_dict: …”)

O(1)

Inserting O(1)

Finding a value by key
(e.g., “if element in my_set: …”)

O(1)

Dictionaries (“hashmaps”)

Sets: it’s dictionaries without values



• Open the notebook match_tarots, and follow the instructions!

• Submit a PR for Issue #7 on GitHub
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Exercise

exercises/match_tarotsHands-on



How does rewriting in C change the performance?
(rewriting in C, parallelization; same algorithm)
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Fast code
O(n2)

Regular code
O(n log n)

Fast execution
Slow scaling 

O(n2)

Slow execution
Fast scaling 
O(n log n)



How does rewriting in C change the performance?
(rewriting in C, parallelization; same algorithm)
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Fast code
O(n2)

Regular code
O(n log n)

Faster language 
increases 

performance for 
fixed N



How does rewriting in C change the performance?
(rewriting in C, parallelization; same algorithm)
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Fast code
O(n2)

Regular code
O(n log n)



How does rewriting in C change the performance?
(rewriting in C, parallelization; same algorithm)
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Fast code
O(n2)

Regular code
O(n log n)

We need to distinguish 
between “fast” in 
absolute terms for a 
fixed problem size, and 
“fast” in the sense of 
how well it scales



COMING UP NEXT: 
NumPy and the array data structure
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NumPy



NumPy – huh, yeah – what’s it good for?

• Introduces new data structure: 
the array
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An array is a regular, N-dimensional grid of data 
of the same type, typically numerical data



NumPy – huh, yeah – what’s it good for?

• Introduces new data structure: 
the array

• An array could be represented as a list-of-lists

• Why are NumPy arrays better than a list-of-lists?

 **Computer architecture class**
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An array is a regular, N-dimensional grid of data 
of the same type, typically numerical data



Efficiency of NumPy
1) Memory: 

• data occupies the minimum amount of memory required

• some operations can be done without touching the memory at all!
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Efficiency of NumPy

1) Memory: 
• data occupies the minimum amount of memory 

required

• some operations can be done without touching 
the memory at all!

2) Speed: 
• Many operations can be done very efficiently in C. 

For this to be useful, we need to avoid Python for-
loops at all costs! 

• operating on entire arrays rather than their 
individual elements

→ “vectorize” the code 
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NumPy’s memory efficiency

July 2024, CC BY-SA 4.0 Data, v1.0 34



July 2024, CC BY-SA 4.0 Data, v1.0 35

The array data is stored 
in a contiguous 

memory block, using 
native data types

0 1 2 3 4 5 6 7 8

int64

Memory block



July 2024, CC BY-SA 4.0 Data, v1.0 36

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block

24 bytes
NumPy array metadata
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Metadata tells NumPy 
how to interpret the 

memory block

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block

24 bytes
NumPy array metadata
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Metadata tells NumPy 
how to interpret the 

memory block
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Metadata tells NumPy 
how to interpret the 

memory block

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block

24 bytes

0 1 2

3 4 5

6 7 8

NumPy view
NumPy array metadata
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NumPy view

0 1 2 3 4 5 6 7 8

0 2

6 8

0 3 6

1 4 7

2 5 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

x.ravel()

NumPy operation

x.T

x[::2, ::2]

x

The same memory block can be 
interpreted in many ways
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NumPy view

0 1 2 3 4 5 6 7 8

0 2

6 8

0 3 6

1 4 7

2 5 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

x.ravel()

NumPy operation

x.T

x[::2, ::2]

x

The same memory block can be 
interpreted in many ways
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NumPy view

0 1 2 3 4 5 6 7 8

0 2

6 8

0 3 6

1 4 7

2 5 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

x.ravel()

NumPy operation

x.T

x[::2, ::2]

x

The same memory block can be 
interpreted in many ways

dtype int64

ndim 1

shape (9,)

strides (8,)

NumPy array metadata

dtype int64

ndim 2

shape (2, 2)

strides (48, 16)

dtype int64

ndim 2

shape (3, 3)

strides (8, 24)

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)
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NumPy view

0 1 2 3 4 5 6 7 8

0 2

6 8

0 3 6

1 4 7

2 5 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

x.ravel()

NumPy operation

x.T

x[::2, ::2]

x

There are NumPy operations that can be 
performed just by changing the metadata

dtype int64

ndim 1

shape (9,)

strides (8,)

NumPy array metadata

dtype int64

ndim 2

shape (2, 2)

strides (48, 16)

dtype int64

ndim 2

shape (3, 3)

strides (8, 24)

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

very efficient --> O(1)
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NumPy view

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

NumPy operation

x

The same memory block can be 
interpreted in many ways

NumPy array metadata

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

1 3 7

How does the metadata 
look in this case?

dtype

ndim

shape

strides

x[ [0, 1, 2], [1, 0, 1] ]
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NumPy view

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

NumPy operation

x

The same memory block can be 
interpreted in many ways

NumPy array metadata

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

In this case new memory 
needs to be allocated

1 3 7

Another memory block

1 3 7

dtype

ndim

shape

strides

x[ [0, 1, 2], [1, 0, 1] ]



Fancy indexing in NumPy – reference slide
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Operations that only change the metadata return a “view “ of 
the original memory block, otherwise a new memory block 
needs to be allocated, returning a “copy”
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Live Coding

notebooks/NumPy/NumPy_v

iews_and_copies.ipynb



NumPy views and copies

View
• accessing the array without changing the memory block 

• slicing gives views

• in-place operations modify the memory block and all of its views

Copy
• when a copy of an array needs to be created, it allocates a separate 

memory block and associates it with a new metadata

•  fancy indexing always gives copies

• a copy can be forced by method .copy()
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Live Coding

notebooks/NumPy/NumPy_v

iews_and_copies.ipynb



NumPy views and copies
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Exercise

exercises/view_or_copy

/view_or_copy.ipynb

View
• accessing the array without changing the memory block 

• slicing gives views

• in-place operations modify the memory block and all of its views

Copy
• when a copy of an array needs to be created, it allocates a separate 

memory block and associates it with a new metadata

•  fancy indexing always gives copies

• a copy can be forced by method .copy()



A special kind of view: broadcasting operations
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0 1 2 3 4 5 6 7 8

Memory block

NumPy array metadata

dtype int64

ndim 2

shape (4, 9)

strides (0, 8)

A stride of 0 means 
that for each new 
row, we don’t move 
in memory

The shape says we 
have 4 rows and 9 
columns



A special kind of view: broadcasting operations
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0 1 2 3 4 5 6 7 8

Memory block

NumPy viewNumPy array metadata

dtype int64

ndim 2

shape (4, 9)

strides (0, 8)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

A stride of 0 means 
that for each new 
row, we don’t move 
in memory

As a result, we obtain a view with 
duplicated rows, without using 
extra memory!

The shape says we 
have 4 rows and 9 
columns



NumPy uses broadcasting to perform operation on arrays of 
different shape without having to allocate extra memory
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Broadcasting notebook 
summary

• how NumPy treats arrays with different shapes during arithmetic 
operations

• Rules of broadcasting
• 1: If the two arrays differ in their number of dimensions, the shape of the 

one with fewer dimensions is padded with ones on its leading (left) side.

• 2: If the shape of the two arrays does not match in any dimension, the array 
with shape equal to 1 in that dimension is stretched to match the other 
shape.

• 3: If in any dimension the sizes disagree and neither is equal to 1, an error is 
raised.
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Dive in Broadcastig 

notebooks/NumPy/broadcasting.ip

ynb



July 2024, CC BY-SA 4.0 Data, v1.0 54

NumPy’s speed efficiency



For-loops in Python vs in C

• Data is of a C numerical type → regular layout 
in memory
• A C loop can jump from one memory location to the 

next by moving by “strides” bytes and accumulating 
the result

• To get that performance, one needs to vectorize! 
it’s important to avoid for-loops at all costs
            (with NumPy in Python)
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operations performed on entire arrays at once
→Faster computation

→no looping through each 
element individually
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Vectorization



operations performed on entire arrays at once
→Faster computation

→no looping through each 
element individually
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Basic operators

Vectorization

Aggregation functions



For-loops in Python vs in C

• Data is of a C numerical type → regular layout 
in memory
• A C loop can jump from one memory location to the 

next by moving by “strides” bytes and accumulating 
the result

• To get that performance, one needs to vectorize! 
it’s important to avoid for-loops at all costs
            (with NumPy in Python)
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How is efficiency of Python vs C in the 
Big-O sense?



Exercise: vectorize the code
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Exercise

exercises/NumPy_vectorize / 

NumPy_vectorize.ipynb
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Tabular data



Spreadsheets and databases rule the world!
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https://techcommunity.microsoft.com/t5/excel-blog/guinness-world-
records-the-largest-collection-of-spreadsheet/ba-p/216592

Ariel Fischman holds the Guinness World Record for owning the most spreadsheet 
software (over 500!)



What is tabular data?
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Date (index) Wind speed Wind direction Rain fall (mm) Hours of sun

7.3.2024 7.1 N 0.0 10

8.3.2024 0.3 NW 2.1 2

9.3.2024 1.1 SE 0.3 5

Subject ID 
(index)

Condition ID Presentation nr Response time 
(ms)

Response

VM 732 2 28 LEFT

VM 732 3 41 RIGHT

PB 665 1 73 LEFT

Unlike arrays, each column can 
represent another type of value, with 
different data types



What is tabular data?
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Date (index) Wind speed Wind direction Rain fall (mm) Hours of sun

7.3.2024 7.1 N 0.0 10

8.3.2024 0.3 NW 2.1 2

9.3.2024 1.1 SE 0.3 5

Subject ID 
(index)

Condition ID Presentation nr Response time 
(ms)

Response

VM 732 2 28 LEFT

VM 732 3 41 RIGHT

PB 665 1 73 LEFT

Column and rows have 
meaningful labels (indices) 
that are attached to the 
data for each operation



Many tools to handle tabular data

• Python tools
• pandas: in-memory tabular data

• dask: on-disk tabular data

• SQL databases
• Optimized for retrieving rows (tree data structure for index)

• Transactional: groups of operations are either all executed, or none

• Columnar DBs, Spark, Hadoop
• Optimized for operations on columns

• Ideal for data science tasks

• Operations can be automatically distributed over multiple machines
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df.groupby(‘condition_id’)[‘response_time’].mean()

df.groupby(‘condition_id’)[‘response_time’].mean()

Pandas

dask

df.groupby(‘condition_id’).avg(‘response_time’)PySpark

SQL

Tabular data ideas and operations are universal for all 
tabular data tools
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SELECT condition_id, 
       AVG(response_time) AS avg_response_time 
FROM df 
GROUP BY condition_id;



Introduction to Pandas
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Live Coding

notebooks/030_tabular_data/

010_pandas_introduction.ipynb



Introduction to Pandas

Main points:

• A DataFrame is a tabular data structure

• DataFrames have labeled columns and rows (“indices”)

• Columns can be of different C-native dtypes

• Operations are on columns by default

• NaNs are interpreted as missing data and ignored in most operations

• Strings (and dates) have a special accessor to perform vectorized 
string (or date) operations
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Live Coding

notebooks/030_tabular_data/

010_pandas_introduction.ipynb



Basic Pandas reference slide
• Looking at data

▪ df.head() : show the first 5 rows

▪ df.tail() : show the last 5 rows

▪ df.sample(n) : show n random rows

• Attributes
▪ df.shape : size of the table

▪ df.dtypes : print dtype of cols

▪ df.columns : column index

▪ df.index : rows index

• Indexing
▪ df[‘age’] : get column ‘age’

▪ df[[‘age’, ‘name’]] : multiple columns

▪ df.iloc[0, 2] : one element, by position

• Exploration
▪ df[‘name’].unique() : unique values

▪ df[‘age’].describe() : summary stats

▪ df[‘age’].value_counts(dropna=False) : number of 
rows per unique value in column

• Adding a column
▪ df[‘new’] = df[‘age’] * 3.1 : add new column

• Filtering
• df[df['age'] > 30] : select rows where condition is 

True

• Operations
• df.min(), .max(), .mean(), .std(), etc. : 

column-wise operations

• df.count() : count of non-NaN elements in columns

• df.sort_values(‘name’) : reorder rows by values of 
column ‘name’

• df.sort_index() : reorder rows by the index values

• String operations
• df[‘name’].str : accessor for operations on the 

strings in a col

• df['name'].str[2:4] : slice the strings in a col

• df['name'].str.count(‘a’) : count the letter ‘a’ in 
the string in a col
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Tabular data example from the lab
• Research question: Does neuronal activity change over time? Does this depend 

on the overall activity level of the neuronal network?
The mainstream theory suggests that neural activity is self-regulating to maintain 
a baseline level (“homeostatic plasticity”)
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• Exp design: patch clamp 
recordings from the same cells 
(or different cells/ same slices) 
before and after prolonged 
incubation in high potassium (K) 

• Potassium stimulates and TTX 
silences the entire network, 
allowing us to control the 
overall activity
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Time (seconds)

m
V

Time (seconds)
TH =

 -39 mV

max_depol =
377.4 mV/ms

AP_heigth 
= 92.2 mV

max_repol =
-91.4 mV/ms

AP_halfwidth
 = 0.91 ms

Action potential (AP) properties
resting_potential = -74.3 mV

*      *.     *.       *   *        * max_spikes = 6



• Use Pandas to explore the neural data

• Submit a PR for Issue #2 on GitHub
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Exercise

exercises/pandas_introHands-on
Let’s have a look at the neural data



TABULAR DATA OPERATIONS
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Common operations on tabular data

• Tabular data has additional needs compared to arrays. Understanding how 
to vectorize these operations is critical for handling them

• Combine information across tables (join, anti-join)
• Join: e.g., combine table with experiments results with table with experiments 

metadata (date, location, experimenter, free-form notes, …)
• Anti-join: e.g. student compiles list of outliers, exclude them from the table of 

experiments to analyze

• Summary tables (split-apply-combine)
• E.g., compute average measurement and standard deviation by experimental 

condition and treatment dosage

• Window functions to vectorize complex computations over groups
• E.g., compute the time distance between experiments by lab technician
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Joins
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Join operations: combining informations from multiple 
tables
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+

=



Join operations
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Live Coding

notebooks/tabular_data/

020_join_operations.ipynb



Join operations

Main points:

• Join operations can be used to combine two tables using the values of 
one or more columns

• Different types of join:
• left/right: keep all the column values that are present in the first/second table

• inner: keep all the column values that are present in both tables

• outer: keep all the column values that are present in one or the other tables

• Anti-joins can be used to exclude the values that are present in one, 
but not the other table (filtering based on arbitrary criteria)
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Live Coding

notebooks/tabular_data/

020_join_operations.ipynb



• Use joins to add experiment information to the neural data

• Use anti-joins to remove outliers

• Submit a PR for Issue #3 on GitHub
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Exercise

exercises/tabular_joinHands-on



Split-apply-combine
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The basic structure of most numerical analyses
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split apply combine

A1

A2

B1

B2

C2

mean



Split-apply-combine 
operations
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Live Coding

notebooks/030_tabular_data/

030_split-apply-combine.ipynb



Split-apply-combine 
operations

Main points:

• Tabular data tools have a way to vectorize the standard
split-apply-combine operations, using a “group-by” command

• In addition, Pandas has got a “pivot-table” command that can be used 
to simplify the creation of more complex summary tables
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Live Coding

notebooks/030_tabular_data/

030_split-apply-combine.ipynb
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split apply combine

A1

A2

B1

B2

C2

mean

df.groupby(‘condition_id’)[‘response_time’].mean()
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split

apply

combine

data.pivot_table(
 index='condition_id', columns='response', 

values='response_time', aggfunc='mean',
)



• Compute summary statistics for the neural data

• Submit a PR for Issue #4 on GitHub
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Exercise

exercises/

tabular_split_apply_combine

Hands-on



• Compute some summary tables for the WHO tuberculosis data
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Exercise

exercises/tuberculosisHands-on

Males 15-24 years



Tidy Data
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Same data, different organization
Which one is best for data analysis?
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Same data, different organization
Which one is best for data analysis?
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What do we want?
We want data to be in a 
natural format, such that 
data analysis is easy



Tidy data
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Subject ID Condition ID Trial nr Response 
time (ms)

Response

VM 732 2 28 LEFT

VM 732 3 41 RIGHT

PB 665 1 73 LEFT

Variables (or features, attributes)

O
b

se
rv

a
ti

o
n

s 
(o

r 
sa

m
p

le
s)

In tidy data:
1. Each variable forms a column
2. Each observation forms a row
3. Each type of observational unit forms a table

Observations increase when 
new units (dates, subjects, …) 
are measured

Variables increase 
when new types of 
measurements are 
introduced



Hands-on
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Identify variables, observations, and values. 
What would a tidy version look like?



Hands-on
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Identify variables, observations, and values. 
What would a tidy version look like?



Messy data
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“Tidy datasets are all alike but every 

messy dataset is messy in its own way” 

– Hadley Wickham

Column headers 
are values, not 
variable names  

Variables are 
stored in both 
rows and columns  

Multiple variables 
are stored in one 
column

 

Some variables 
are stored in the 
file names

 

2024-01_prices_DE.csv
2024-01_prices_FR.csv
2024-02_prices_DE.csv
2024-02_prices_FR.csv



The life-changing magic of tidying up data

Pivoting – we know this one
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df.pivot_table(
 index=['city', 'date'], columns='type’, 
 values='temperature', aggfunc='max’,
)

The “type” column is 
storing variable names

pivot

 



The life-changing magic of tidying up data

Melting – it’s kind of the opposite of pivoting

July 2024, CC BY-SA 4.0 Data, v1.0 98

pd.melt(data, id_vars=['subject', 'date'], value_name='response_time')

The treatment 
values are stored as 
a column name

 

melt

Split the columns in (A) “id_vars” and (B) non-”id_vars”. The column names in (B) are used as new 
values in a new column “variable”. The values in columns (B) go into a new column, “response_time”.



The life-changing magic of tidying up data

pd.concat – add together tables with the same 
variables (columns)
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Some variables 
are stored in the 
file names

 

2024-01_prices_DE.csv
2024-01_prices_FR.csv
2024-02_prices_DE.csv
2024-02_prices_FR.csv

tables = []
for filename in filenames:   
    # Parse filename
    year_month, _, country = filename[:-4].split('_')
    # Read table and add columns for the variables
    df = pd.read_csv(filename)
    # Add the variables that were in the filename
    df['year_month'] = year_month
    df['country’] = country
    # Store table
    tables.append(df)

# Create complete table
tidy_df = pd.concat(tables)    



Hands-on

• Tidy up the data set in the tuberculosis exercise
and compute the summary stats

• Submit a PR for Issue #5 on GitHub
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Exercise

Multiple variables 
are stored in one 
column

exercises/tabular_tidy_data

 



Why is tidy data good?

• Many analyses require a simple sequence of 
steps:
• Filter by individual variables to discard data that is 

not needed

• Group and summarize

• Re-arrange (e.g. sort)

• Visualize

• Joining tidy tables is easy! 

• One can write generic code that takes tidy data 
as input. 
For example, seaborn relies on tidy data to 
make complex plots
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sns.swarmplot(
   data=df,
   x="body_mass_g",
   y="sex",
   hue="species”,
)



Window functions
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Window functions: grouped row-by-row operations

• “Window functions” are a kind of split-apply-combine operation, but 
instead of aggregating the data in a group and returning one value 
per group, they return one value per row

• Examples: ranking all entries in a group; computing the distance 
between timestamps per group; number the rows by group in 
chronological order

• In Pandas, most of these operations can be performed with a 
combination of sorting and grouping-by
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Window functions
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Live Coding

notebooks/tabular_data/

040_window_functions.ipynb



Window functions

• Main points:
• Window functions perform row-by-row operations on grouped data

• They are an advanced way of avoiding for loops with tabular data

• In Pandas, they can be achieved with a combo of sorting and grouping-by
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Live Coding

notebooks/tabular_data/

040_window_functions.ipynb



Window functions operations
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df['nr_lefts'] = df.sort_values('time (ms)').groupby('subject_id')['is_left'].cumsum()



Hands-on

• Compute the average number of days each patcher waited between 
experiments

• Submit a PR for Issue #6 on GitHub
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Exercise

exercises/

tabular_window_functions



Global summary

• There are many different data structures, each specialized in efficiently 
processing one type of data

• Code performance grows differently with data size: Big-O

• NumPy array efficiently store data in a C-native memory block, interpreted as an 
array using some metadata

• NumPy operations that only need to change the metadata do so, creating a view 
of the same memory block. These operations are O(1)!

• Tabular data can also be vectorized using joins, anti-joins, split-apply-combine 
operations, and window functions

• For these operations to be efficient and painless, data should be stored in a tidy 
data format
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What we didn’t talk about

• Other data structures: graphs, trees, priority queues, …

• Options for working with large data on disk / remotely (instead of in-memory)

• Best practices in data handling: versioning, lineage, sharing

• Organizing a complex data set in multiple tables

• … and a lot more!
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Thank you!
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Data organization

• Data organization concepts:
• tidy data

• normalized data (star organization)

• data science friendly data (denormalized)
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Organizing multiple tables

• Dimension vs fact tables

• De-normalization (but for data analys flat tables are more convienent)
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Dealing with changes in the data

• Recommendations: 
• NEVER overwite a data file. Treat data files as immutable

• Use versioning for changes in the data file, and load the latest version for new 
analyses, old versions to reproduce previous results

• (pond is a library I’m working on to automatize this process)

• Like in computer code:
• Adding new columns / rows is generally ok

• Deleting/changing a column is not! Code will break! Add a new column 
instead
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