
The data class
Pietro Berkes & Verjinia Metodieva

Things one thinks about when thinking about data

July 2024, CC BY-SA 4.0 Data, v1.0 2

• Size
• Access ease
• Access time

Storage

• Efficient
processing
(no for-loops!)

• Organizing data so
that analyses are
easy

Processing

• Versioning
• Lineage tracing

(which script /
other data was
used to generate
this?)

• Ease of sharing

Reproducibility and
collaboration

Things one thinks about when thinking about data

July 2024, CC BY-SA 4.0 Data, v1.0 3

• Size
• Access ease
• Access time

Storage

• Efficient
processing
(no for-loops!)

• Organizing data so
that analyses are
easy

Processing

• Versioning
• Lineage tracing

(which script /
other data was
used to generate
this?)

• Ease of sharing

Reproducibility and
collaboration

Hands-on
What data structure would you use to represent…

July 2024, CC BY-SA 4.0 Data, v1.0 4

Hands-on
What data structure would you use to represent…

July 2024, CC BY-SA 4.0 Data, v1.0 5

A sound wave?

Hands-on
What data structure would you use to represent…

July 2024, CC BY-SA 4.0 Data, v1.0 6

A sound wave? NumPy array

Hands-on
What data structure would you use to represent…

July 2024, CC BY-SA 4.0 Data, v1.0 7

Phone book entries?

Hands-on
What data structure would you use to represent…

July 2024, CC BY-SA 4.0 Data, v1.0 8

Pandas DataFramePhone book entries?

Hands-on
What data structure would you use to represent…

July 2024, CC BY-SA 4.0 Data, v1.0 9

Friendship relations?

Hands-on
What data structure would you use to represent…

July 2024, CC BY-SA 4.0 Data, v1.0 10

Adjacency matrix
(array)

Dictionary

Implemented as

Friendship relations? Graph

You develop your code on a small data set, how is it going to
scale to the complete data set?

July 2024, CC BY-SA 4.0 Data, v1.0 11

N data points,
Processing time T

10x N data points
Processing time -> ?

Development data Real data

We’re interested in orders of magnitude

How performance scales: big-O

July 2024, CC BY-SA 4.0 Data, v1.0 12

Big-O class What we call it Time increase, when
data increases 10x

O(1) constant 1x time

O(n) linear 10x time

O(n2) quadratic 100x time

O(n * log n) linearithmic ~10-20x time

O(log n) logarithmic ~1-2x time Ti
m

e

Input size, n

O(n)

O(log n)

O(1)

O(n log n)O(n2)O(2n)

Hands-on: Operations on lists

July 2024, CC BY-SA 4.0 Data, v1.0 13

Big-O class What we call it Time increase, when
data increases 10x

O(1) constant 1x time

O(n) linear 10x time

O(n2) quadratic 100x time

O(n * log n) linearithmic ~10-20x time

O(log n) logarithmic ~1-2x time Ti
m

e

Input size, n

O(n)

O(log n)

O(1)

O(n log n)O(n2)O(2n)

Big-O class Operation on lists that scales this way

O(1)

O(n)

O(n2)

O(n * log n)

O(log n)

Hands-on: Operations on lists

July 2024, CC BY-SA 4.0 Data, v1.0 14

Big-O class What we call it Time increase, when
data increases 10x

O(1) constant 1x time

O(n) linear 10x time

O(n2) quadratic 100x time

O(n * log n) linearithmic ~10-20x time

O(log n) logarithmic ~1-2x time Ti
m

e

Input size, n

O(n)

O(log n)

O(1)

O(n log n)O(n2)O(2n)

Big-O class Operation on lists that scales this way

O(1) Getting an element by its index

O(n) Summing elements in list

O(n2) Computing distance between all pairs of
elements in the list

O(n * log n) Sorting the list

O(log n) Searching an element in a sorted list

Example: Find common words

Given two lists of words, extract all the words that are in common

July 2024, CC BY-SA 4.0 Data, v1.0 15

Expected result: ['apple', 'orange', 'banana']

Implementation with two for-loops

July 2024, CC BY-SA 4.0 Data, v1.0 16

What is the big-O complexity of this implementation?

Implementation with two for-loops

July 2024, CC BY-SA 4.0 Data, v1.0 17

What is the big-O complexity of this implementation?
N * N ~ O(N2)

Implementation with sorted lists

July 2024, CC BY-SA 4.0 Data, v1.0 18

What is the big-O complexity of this implementation?

Implementation with sorted lists

July 2024, CC BY-SA 4.0 Data, v1.0 19

What is the big-O complexity of this implementation?
2 * (N * log(N)) + 2 * N ~ O(N log N)

Implementation with sets

July 2024, CC BY-SA 4.0 Data, v1.0 20

What is the big-O complexity of this implementation?

Implementation with sets

July 2024, CC BY-SA 4.0 Data, v1.0 21

What is the big-O complexity of this implementation?
N + N ~ O(N)

Basic reference sheet about Python data structures

July 2024, CC BY-SA 4.0 Data, v1.0 22

See also: https://wiki.python.org/moin/TimeComplexity

Getting an element by index O(1)

Appending O(1)

Inserting an element at index O(n)

Sorting O(n log n)

Finding an element
(e.g., “if element in my_list: …”)

O(n)

Lists: collection of ordered,
arbitrary data

Inserting O(1)

Finding a value by key
(e.g., “if element in my_dict: …”)

O(1)

Inserting O(1)

Finding a value by key
(e.g., “if element in my_set: …”)

O(1)

Dictionaries (“hashmaps”)

Sets: it’s dictionaries without values

• Open the notebook match_tarots, and follow the instructions!

• Submit a PR for Issue #7 on GitHub

July 2024, CC BY-SA 4.0 Data, v1.0 23

Exercise

exercises/match_tarotsHands-on

How does rewriting in C change the performance?
(rewriting in C, parallelization; same algorithm)

July 2024, CC BY-SA 4.0 Data, v1.0 24

Fast code
O(n2)

Regular code
O(n log n)

Fast execution
Slow scaling

O(n2)

Slow execution
Fast scaling
O(n log n)

How does rewriting in C change the performance?
(rewriting in C, parallelization; same algorithm)

July 2024, CC BY-SA 4.0 Data, v1.0 25

Fast code
O(n2)

Regular code
O(n log n)

Faster language
increases

performance for
fixed N

How does rewriting in C change the performance?
(rewriting in C, parallelization; same algorithm)

July 2024, CC BY-SA 4.0 Data, v1.0 26

Fast code
O(n2)

Regular code
O(n log n)

How does rewriting in C change the performance?
(rewriting in C, parallelization; same algorithm)

July 2024, CC BY-SA 4.0 Data, v1.0 27

Fast code
O(n2)

Regular code
O(n log n)

We need to distinguish
between “fast” in
absolute terms for a
fixed problem size, and
“fast” in the sense of
how well it scales

COMING UP NEXT:
NumPy and the array data structure

July 2024, CC BY-SA 4.0 Data, v1.0 28

July 2024, CC BY-SA 4.0 Data, v1.0 29

NumPy

NumPy – huh, yeah – what’s it good for?

• Introduces new data structure:
the array

July 2024, CC BY-SA 4.0 Data, v1.0 30

An array is a regular, N-dimensional grid of data
of the same type, typically numerical data

NumPy – huh, yeah – what’s it good for?

• Introduces new data structure:
the array

• An array could be represented as a list-of-lists

• Why are NumPy arrays better than a list-of-lists?

 Computer architecture class

July 2024, CC BY-SA 4.0 Data, v1.0 31

An array is a regular, N-dimensional grid of data
of the same type, typically numerical data

Efficiency of NumPy
1) Memory:

• data occupies the minimum amount of memory required

• some operations can be done without touching the memory at all!

July 2024, CC BY-SA 4.0 Data, v1.0 32

Efficiency of NumPy

1) Memory:
• data occupies the minimum amount of memory

required

• some operations can be done without touching
the memory at all!

2) Speed:
• Many operations can be done very efficiently in C.

For this to be useful, we need to avoid Python for-
loops at all costs!

• operating on entire arrays rather than their
individual elements

→ “vectorize” the code

July 2024, CC BY-SA 4.0 Data, v1.0 33

NumPy’s memory efficiency

July 2024, CC BY-SA 4.0 Data, v1.0 34

July 2024, CC BY-SA 4.0 Data, v1.0 35

The array data is stored
in a contiguous

memory block, using
native data types

0 1 2 3 4 5 6 7 8

int64

Memory block

July 2024, CC BY-SA 4.0 Data, v1.0 36

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block

24 bytes
NumPy array metadata

July 2024, CC BY-SA 4.0 Data, v1.0 37

Metadata tells NumPy
how to interpret the

memory block

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block

24 bytes
NumPy array metadata

July 2024, CC BY-SA 4.0 Data, v1.0 38

Metadata tells NumPy
how to interpret the

memory block

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block

24 bytes
NumPy array metadata

July 2024, CC BY-SA 4.0 Data, v1.0 39

Metadata tells NumPy
how to interpret the

memory block

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block

24 bytes

0 1 2

3 4 5

6 7 8

NumPy view
NumPy array metadata

July 2024, CC BY-SA 4.0 Data, v1.0 40

NumPy view

0 1 2 3 4 5 6 7 8

0 2

6 8

0 3 6

1 4 7

2 5 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

x.ravel()

NumPy operation

x.T

x[::2, ::2]

x

The same memory block can be
interpreted in many ways

July 2024, CC BY-SA 4.0 Data, v1.0 41

NumPy view

0 1 2 3 4 5 6 7 8

0 2

6 8

0 3 6

1 4 7

2 5 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

x.ravel()

NumPy operation

x.T

x[::2, ::2]

x

The same memory block can be
interpreted in many ways

July 2024, CC BY-SA 4.0 Data, v1.0 42

NumPy view

0 1 2 3 4 5 6 7 8

0 2

6 8

0 3 6

1 4 7

2 5 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

x.ravel()

NumPy operation

x.T

x[::2, ::2]

x

The same memory block can be
interpreted in many ways

dtype int64

ndim 1

shape (9,)

strides (8,)

NumPy array metadata

dtype int64

ndim 2

shape (2, 2)

strides (48, 16)

dtype int64

ndim 2

shape (3, 3)

strides (8, 24)

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

July 2024, CC BY-SA 4.0 Data, v1.0 43

NumPy view

0 1 2 3 4 5 6 7 8

0 2

6 8

0 3 6

1 4 7

2 5 8

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

x.ravel()

NumPy operation

x.T

x[::2, ::2]

x

There are NumPy operations that can be
performed just by changing the metadata

dtype int64

ndim 1

shape (9,)

strides (8,)

NumPy array metadata

dtype int64

ndim 2

shape (2, 2)

strides (48, 16)

dtype int64

ndim 2

shape (3, 3)

strides (8, 24)

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

very efficient --> O(1)

July 2024, CC BY-SA 4.0 Data, v1.0 44

NumPy view

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

NumPy operation

x

The same memory block can be
interpreted in many ways

NumPy array metadata

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

1 3 7

How does the metadata
look in this case?

dtype

ndim

shape

strides

x[[0, 1, 2], [1, 0, 1]]

July 2024, CC BY-SA 4.0 Data, v1.0 45

NumPy view

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Memory block

NumPy operation

x

The same memory block can be
interpreted in many ways

NumPy array metadata

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

In this case new memory
needs to be allocated

1 3 7

Another memory block

1 3 7

dtype

ndim

shape

strides

x[[0, 1, 2], [1, 0, 1]]

Fancy indexing in NumPy – reference slide

July 2024, CC BY-SA 4.0 Data, v1.0 46

Operations that only change the metadata return a “view “ of
the original memory block, otherwise a new memory block
needs to be allocated, returning a “copy”

July 2024, CC BY-SA 4.0 Data, v1.0 47

Live Coding

notebooks/NumPy/NumPy_v

iews_and_copies.ipynb

NumPy views and copies

View
• accessing the array without changing the memory block

• slicing gives views

• in-place operations modify the memory block and all of its views

Copy
• when a copy of an array needs to be created, it allocates a separate

memory block and associates it with a new metadata

• fancy indexing always gives copies

• a copy can be forced by method .copy()

July 2024, CC BY-SA 4.0 Data, v1.0 48

Live Coding

notebooks/NumPy/NumPy_v

iews_and_copies.ipynb

NumPy views and copies

July 2024, CC BY-SA 4.0 Data, v1.0 49

Exercise

exercises/view_or_copy

/view_or_copy.ipynb

View
• accessing the array without changing the memory block

• slicing gives views

• in-place operations modify the memory block and all of its views

Copy
• when a copy of an array needs to be created, it allocates a separate

memory block and associates it with a new metadata

• fancy indexing always gives copies

• a copy can be forced by method .copy()

A special kind of view: broadcasting operations

July 2024, CC BY-SA 4.0 Data, v1.0 50

0 1 2 3 4 5 6 7 8

Memory block

NumPy array metadata

dtype int64

ndim 2

shape (4, 9)

strides (0, 8)

A stride of 0 means
that for each new
row, we don’t move
in memory

The shape says we
have 4 rows and 9
columns

A special kind of view: broadcasting operations

July 2024, CC BY-SA 4.0 Data, v1.0 51

0 1 2 3 4 5 6 7 8

Memory block

NumPy viewNumPy array metadata

dtype int64

ndim 2

shape (4, 9)

strides (0, 8)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

A stride of 0 means
that for each new
row, we don’t move
in memory

As a result, we obtain a view with
duplicated rows, without using
extra memory!

The shape says we
have 4 rows and 9
columns

NumPy uses broadcasting to perform operation on arrays of
different shape without having to allocate extra memory

July 2024, CC BY-SA 4.0 Data, v1.0 52

Broadcasting notebook
summary

• how NumPy treats arrays with different shapes during arithmetic
operations

• Rules of broadcasting
• 1: If the two arrays differ in their number of dimensions, the shape of the

one with fewer dimensions is padded with ones on its leading (left) side.

• 2: If the shape of the two arrays does not match in any dimension, the array
with shape equal to 1 in that dimension is stretched to match the other
shape.

• 3: If in any dimension the sizes disagree and neither is equal to 1, an error is
raised.

July 2024, CC BY-SA 4.0 Data, v1.0 53

Dive in Broadcastig

notebooks/NumPy/broadcasting.ip

ynb

July 2024, CC BY-SA 4.0 Data, v1.0 54

NumPy’s speed efficiency

For-loops in Python vs in C

• Data is of a C numerical type → regular layout
in memory
• A C loop can jump from one memory location to the

next by moving by “strides” bytes and accumulating
the result

• To get that performance, one needs to vectorize!
it’s important to avoid for-loops at all costs
 (with NumPy in Python)

July 2024, CC BY-SA 4.0 Data, v1.0 55

operations performed on entire arrays at once
→Faster computation

→no looping through each
element individually

July 2024, CC BY-SA 4.0 Data, v1.0 56

Vectorization

operations performed on entire arrays at once
→Faster computation

→no looping through each
element individually

July 2024, CC BY-SA 4.0 Data, v1.0 57

Basic operators

Vectorization

Aggregation functions

For-loops in Python vs in C

• Data is of a C numerical type → regular layout
in memory
• A C loop can jump from one memory location to the

next by moving by “strides” bytes and accumulating
the result

• To get that performance, one needs to vectorize!
it’s important to avoid for-loops at all costs
 (with NumPy in Python)

July 2024, CC BY-SA 4.0 Data, v1.0 58

How is efficiency of Python vs C in the
Big-O sense?

Exercise: vectorize the code

July 2024, CC BY-SA 4.0 Data, v1.0 59

Exercise

exercises/NumPy_vectorize /

NumPy_vectorize.ipynb

July 2024, CC BY-SA 4.0 Data, v1.0 60

Tabular data

Spreadsheets and databases rule the world!

July 2024, CC BY-SA 4.0 Data, v1.0 61
https://techcommunity.microsoft.com/t5/excel-blog/guinness-world-
records-the-largest-collection-of-spreadsheet/ba-p/216592

Ariel Fischman holds the Guinness World Record for owning the most spreadsheet
software (over 500!)

What is tabular data?

July 2024, CC BY-SA 4.0 Data, v1.0 62

Date (index) Wind speed Wind direction Rain fall (mm) Hours of sun

7.3.2024 7.1 N 0.0 10

8.3.2024 0.3 NW 2.1 2

9.3.2024 1.1 SE 0.3 5

Subject ID
(index)

Condition ID Presentation nr Response time
(ms)

Response

VM 732 2 28 LEFT

VM 732 3 41 RIGHT

PB 665 1 73 LEFT

Unlike arrays, each column can
represent another type of value, with
different data types

What is tabular data?

July 2024, CC BY-SA 4.0 Data, v1.0 63

Date (index) Wind speed Wind direction Rain fall (mm) Hours of sun

7.3.2024 7.1 N 0.0 10

8.3.2024 0.3 NW 2.1 2

9.3.2024 1.1 SE 0.3 5

Subject ID
(index)

Condition ID Presentation nr Response time
(ms)

Response

VM 732 2 28 LEFT

VM 732 3 41 RIGHT

PB 665 1 73 LEFT

Column and rows have
meaningful labels (indices)
that are attached to the
data for each operation

Many tools to handle tabular data

• Python tools
• pandas: in-memory tabular data

• dask: on-disk tabular data

• SQL databases
• Optimized for retrieving rows (tree data structure for index)

• Transactional: groups of operations are either all executed, or none

• Columnar DBs, Spark, Hadoop
• Optimized for operations on columns

• Ideal for data science tasks

• Operations can be automatically distributed over multiple machines

July 2024, CC BY-SA 4.0 Data, v1.0 64

df.groupby(‘condition_id’)[‘response_time’].mean()

df.groupby(‘condition_id’)[‘response_time’].mean()

Pandas

dask

df.groupby(‘condition_id’).avg(‘response_time’)PySpark

SQL

Tabular data ideas and operations are universal for all
tabular data tools

July 2024, CC BY-SA 4.0 Data, v1.0 65

SELECT condition_id,
 AVG(response_time) AS avg_response_time
FROM df
GROUP BY condition_id;

Introduction to Pandas

July 2024, CC BY-SA 4.0 Data, v1.0 66

Live Coding

notebooks/030_tabular_data/

010_pandas_introduction.ipynb

Introduction to Pandas

Main points:

• A DataFrame is a tabular data structure

• DataFrames have labeled columns and rows (“indices”)

• Columns can be of different C-native dtypes

• Operations are on columns by default

• NaNs are interpreted as missing data and ignored in most operations

• Strings (and dates) have a special accessor to perform vectorized
string (or date) operations

July 2024, CC BY-SA 4.0 Data, v1.0 67

Live Coding

notebooks/030_tabular_data/

010_pandas_introduction.ipynb

Basic Pandas reference slide
• Looking at data

▪ df.head() : show the first 5 rows

▪ df.tail() : show the last 5 rows

▪ df.sample(n) : show n random rows

• Attributes
▪ df.shape : size of the table

▪ df.dtypes : print dtype of cols

▪ df.columns : column index

▪ df.index : rows index

• Indexing
▪ df[‘age’] : get column ‘age’

▪ df[[‘age’, ‘name’]] : multiple columns

▪ df.iloc[0, 2] : one element, by position

• Exploration
▪ df[‘name’].unique() : unique values

▪ df[‘age’].describe() : summary stats

▪ df[‘age’].value_counts(dropna=False) : number of
rows per unique value in column

• Adding a column
▪ df[‘new’] = df[‘age’] * 3.1 : add new column

• Filtering
• df[df['age'] > 30] : select rows where condition is

True

• Operations
• df.min(), .max(), .mean(), .std(), etc. :

column-wise operations

• df.count() : count of non-NaN elements in columns

• df.sort_values(‘name’) : reorder rows by values of
column ‘name’

• df.sort_index() : reorder rows by the index values

• String operations
• df[‘name’].str : accessor for operations on the

strings in a col

• df['name'].str[2:4] : slice the strings in a col

• df['name'].str.count(‘a’) : count the letter ‘a’ in
the string in a col

July 2024, CC BY-SA 4.0 Data, v1.0 68

Tabular data example from the lab
• Research question: Does neuronal activity change over time? Does this depend

on the overall activity level of the neuronal network?
The mainstream theory suggests that neural activity is self-regulating to maintain
a baseline level (“homeostatic plasticity”)

July 2024, CC BY-SA 4.0 Data, v1.0 69

• Exp design: patch clamp
recordings from the same cells
(or different cells/ same slices)
before and after prolonged
incubation in high potassium (K)

• Potassium stimulates and TTX
silences the entire network,
allowing us to control the
overall activity

Variables

300 pA

Applied Current

D
ay

 1
 (

D
1

)

Variables
D

ay
 1

 (
D

1
)

D
ay

 2
 (

D
2

)

300 pA

Applied Current

D
ay

 1
 (

D
1

)
D

ay
 2

 (
D

2
)

Variables

m
V

Time (seconds)

D
ay

 1
 (

D
1

)
D

ay
 2

 (
D

2
)

Variables

July 2024, CC BY-SA 4.0 Data, v1.0 73
Time (seconds)

m
V

Time (seconds)
TH =

 -39 mV

max_depol =
377.4 mV/ms

AP_heigth
= 92.2 mV

max_repol =
-91.4 mV/ms

AP_halfwidth
 = 0.91 ms

Action potential (AP) properties
resting_potential = -74.3 mV

* *. *. * * * max_spikes = 6

• Use Pandas to explore the neural data

• Submit a PR for Issue #2 on GitHub

July 2024, CC BY-SA 4.0 Data, v1.0 74

Exercise

exercises/pandas_introHands-on
Let’s have a look at the neural data

TABULAR DATA OPERATIONS

July 2024, CC BY-SA 4.0 Data, v1.0 75

Common operations on tabular data

• Tabular data has additional needs compared to arrays. Understanding how
to vectorize these operations is critical for handling them

• Combine information across tables (join, anti-join)
• Join: e.g., combine table with experiments results with table with experiments

metadata (date, location, experimenter, free-form notes, …)
• Anti-join: e.g. student compiles list of outliers, exclude them from the table of

experiments to analyze

• Summary tables (split-apply-combine)
• E.g., compute average measurement and standard deviation by experimental

condition and treatment dosage

• Window functions to vectorize complex computations over groups
• E.g., compute the time distance between experiments by lab technician

July 2024, CC BY-SA 4.0 Data, v1.0 76

Joins

July 2024, CC BY-SA 4.0 Data, v1.0 77

Join operations: combining informations from multiple
tables

July 2024, CC BY-SA 4.0 Data, v1.0 78

+

=

Join operations

July 2024, CC BY-SA 4.0 Data, v1.0 79

Live Coding

notebooks/tabular_data/

020_join_operations.ipynb

Join operations

Main points:

• Join operations can be used to combine two tables using the values of
one or more columns

• Different types of join:
• left/right: keep all the column values that are present in the first/second table

• inner: keep all the column values that are present in both tables

• outer: keep all the column values that are present in one or the other tables

• Anti-joins can be used to exclude the values that are present in one,
but not the other table (filtering based on arbitrary criteria)

July 2024, CC BY-SA 4.0 Data, v1.0 80

Live Coding

notebooks/tabular_data/

020_join_operations.ipynb

• Use joins to add experiment information to the neural data

• Use anti-joins to remove outliers

• Submit a PR for Issue #3 on GitHub

July 2024, CC BY-SA 4.0 Data, v1.0 81

Exercise

exercises/tabular_joinHands-on

Split-apply-combine

July 2024, CC BY-SA 4.0 Data, v1.0 82

The basic structure of most numerical analyses

July 2024, CC BY-SA 4.0 Data, v1.0 83

split apply combine

A1

A2

B1

B2

C2

mean

Split-apply-combine
operations

July 2024, CC BY-SA 4.0 Data, v1.0 84

Live Coding

notebooks/030_tabular_data/

030_split-apply-combine.ipynb

Split-apply-combine
operations

Main points:

• Tabular data tools have a way to vectorize the standard
split-apply-combine operations, using a “group-by” command

• In addition, Pandas has got a “pivot-table” command that can be used
to simplify the creation of more complex summary tables

July 2024, CC BY-SA 4.0 Data, v1.0 85

Live Coding

notebooks/030_tabular_data/

030_split-apply-combine.ipynb

July 2024, CC BY-SA 4.0 Data, v1.0 86

split apply combine

A1

A2

B1

B2

C2

mean

df.groupby(‘condition_id’)[‘response_time’].mean()

July 2024, CC BY-SA 4.0 Data, v1.0 87

split

apply

combine

data.pivot_table(
 index='condition_id', columns='response',

values='response_time', aggfunc='mean',
)

• Compute summary statistics for the neural data

• Submit a PR for Issue #4 on GitHub

July 2024, CC BY-SA 4.0 Data, v1.0 88

Exercise

exercises/

tabular_split_apply_combine

Hands-on

• Compute some summary tables for the WHO tuberculosis data

July 2024, CC BY-SA 4.0 Data, v1.0 89

Exercise

exercises/tuberculosisHands-on

Males 15-24 years

Tidy Data

July 2024, CC BY-SA 4.0 Data, v1.0 90

Same data, different organization
Which one is best for data analysis?

July 2024, CC BY-SA 4.0 Data, v1.0 91

Same data, different organization
Which one is best for data analysis?

July 2024, CC BY-SA 4.0 Data, v1.0 92

What do we want?
We want data to be in a
natural format, such that
data analysis is easy

Tidy data

July 2024, CC BY-SA 4.0 Data, v1.0 93

Subject ID Condition ID Trial nr Response
time (ms)

Response

VM 732 2 28 LEFT

VM 732 3 41 RIGHT

PB 665 1 73 LEFT

Variables (or features, attributes)

O
b

se
rv

a
ti

o
n

s
(o

r
sa

m
p

le
s)

In tidy data:
1. Each variable forms a column
2. Each observation forms a row
3. Each type of observational unit forms a table

Observations increase when
new units (dates, subjects, …)
are measured

Variables increase
when new types of
measurements are
introduced

Hands-on

July 2024, CC BY-SA 4.0 Data, v1.0 94

Identify variables, observations, and values.
What would a tidy version look like?

Hands-on

July 2024, CC BY-SA 4.0 Data, v1.0 95

Identify variables, observations, and values.
What would a tidy version look like?

Messy data

July 2024, CC BY-SA 4.0 Data, v1.0 96

“Tidy datasets are all alike but every

messy dataset is messy in its own way”

– Hadley Wickham

Column headers
are values, not
variable names

Variables are
stored in both
rows and columns

Multiple variables
are stored in one
column

Some variables
are stored in the
file names

2024-01_prices_DE.csv
2024-01_prices_FR.csv
2024-02_prices_DE.csv
2024-02_prices_FR.csv

The life-changing magic of tidying up data

Pivoting – we know this one

July 2024, CC BY-SA 4.0 Data, v1.0 97

df.pivot_table(
 index=['city', 'date'], columns='type’,
 values='temperature', aggfunc='max’,
)

The “type” column is
storing variable names

pivot

The life-changing magic of tidying up data

Melting – it’s kind of the opposite of pivoting

July 2024, CC BY-SA 4.0 Data, v1.0 98

pd.melt(data, id_vars=['subject', 'date'], value_name='response_time')

The treatment
values are stored as
a column name

melt

Split the columns in (A) “id_vars” and (B) non-”id_vars”. The column names in (B) are used as new
values in a new column “variable”. The values in columns (B) go into a new column, “response_time”.

The life-changing magic of tidying up data

pd.concat – add together tables with the same
variables (columns)

July 2024, CC BY-SA 4.0 Data, v1.0 99

Some variables
are stored in the
file names

2024-01_prices_DE.csv
2024-01_prices_FR.csv
2024-02_prices_DE.csv
2024-02_prices_FR.csv

tables = []
for filename in filenames:
 # Parse filename
 year_month, _, country = filename[:-4].split('_')
 # Read table and add columns for the variables
 df = pd.read_csv(filename)
 # Add the variables that were in the filename
 df['year_month'] = year_month
 df['country’] = country
 # Store table
 tables.append(df)

Create complete table
tidy_df = pd.concat(tables)

Hands-on

• Tidy up the data set in the tuberculosis exercise
and compute the summary stats

• Submit a PR for Issue #5 on GitHub

July 2024, CC BY-SA 4.0 Data, v1.0 100

Exercise

Multiple variables
are stored in one
column

exercises/tabular_tidy_data

Why is tidy data good?

• Many analyses require a simple sequence of
steps:
• Filter by individual variables to discard data that is

not needed

• Group and summarize

• Re-arrange (e.g. sort)

• Visualize

• Joining tidy tables is easy!

• One can write generic code that takes tidy data
as input.
For example, seaborn relies on tidy data to
make complex plots

July 2024, CC BY-SA 4.0 Data, v1.0 101

sns.swarmplot(
 data=df,
 x="body_mass_g",
 y="sex",
 hue="species”,
)

Window functions

July 2024, CC BY-SA 4.0 Data, v1.0 102

Window functions: grouped row-by-row operations

• “Window functions” are a kind of split-apply-combine operation, but
instead of aggregating the data in a group and returning one value
per group, they return one value per row

• Examples: ranking all entries in a group; computing the distance
between timestamps per group; number the rows by group in
chronological order

• In Pandas, most of these operations can be performed with a
combination of sorting and grouping-by

July 2024, CC BY-SA 4.0 Data, v1.0 103

Window functions

July 2024, CC BY-SA 4.0 Data, v1.0 104

Live Coding

notebooks/tabular_data/

040_window_functions.ipynb

Window functions

• Main points:
• Window functions perform row-by-row operations on grouped data

• They are an advanced way of avoiding for loops with tabular data

• In Pandas, they can be achieved with a combo of sorting and grouping-by

July 2024, CC BY-SA 4.0 Data, v1.0 105

Live Coding

notebooks/tabular_data/

040_window_functions.ipynb

Window functions operations

July 2024, CC BY-SA 4.0 Data, v1.0 106

df['nr_lefts'] = df.sort_values('time (ms)').groupby('subject_id')['is_left'].cumsum()

Hands-on

• Compute the average number of days each patcher waited between
experiments

• Submit a PR for Issue #6 on GitHub

July 2024, CC BY-SA 4.0 Data, v1.0 107

Exercise

exercises/

tabular_window_functions

Global summary

• There are many different data structures, each specialized in efficiently
processing one type of data

• Code performance grows differently with data size: Big-O

• NumPy array efficiently store data in a C-native memory block, interpreted as an
array using some metadata

• NumPy operations that only need to change the metadata do so, creating a view
of the same memory block. These operations are O(1)!

• Tabular data can also be vectorized using joins, anti-joins, split-apply-combine
operations, and window functions

• For these operations to be efficient and painless, data should be stored in a tidy
data format

July 2024, CC BY-SA 4.0 Data, v1.0 108

What we didn’t talk about

• Other data structures: graphs, trees, priority queues, …

• Options for working with large data on disk / remotely (instead of in-memory)

• Best practices in data handling: versioning, lineage, sharing

• Organizing a complex data set in multiple tables

• … and a lot more!

July 2024, CC BY-SA 4.0 Data, v1.0 109

Thank you!

July 2024, CC BY-SA 4.0 Data, v1.0 110

July 2024, CC BY-SA 4.0 Data, v1.0 111

Data organization

• Data organization concepts:
• tidy data

• normalized data (star organization)

• data science friendly data (denormalized)

July 2024, CC BY-SA 4.0 Data, v1.0 112

Organizing multiple tables

• Dimension vs fact tables

• De-normalization (but for data analys flat tables are more convienent)

July 2024, CC BY-SA 4.0 Data, v1.0 113

Dealing with changes in the data

• Recommendations:
• NEVER overwite a data file. Treat data files as immutable

• Use versioning for changes in the data file, and load the latest version for new
analyses, old versions to reproduce previous results

• (pond is a library I’m working on to automatize this process)

• Like in computer code:
• Adding new columns / rows is generally ok

• Deleting/changing a column is not! Code will break! Add a new column
instead

July 2024, CC BY-SA 4.0 Data, v1.0 114

	Untitled Section
	Slide 1
	Slide 2: Things one thinks about when thinking about data
	Slide 3: Things one thinks about when thinking about data
	Slide 4: Hands-on What data structure would you use to represent…
	Slide 5: Hands-on What data structure would you use to represent…
	Slide 6: Hands-on What data structure would you use to represent…
	Slide 7: Hands-on What data structure would you use to represent…
	Slide 8: Hands-on What data structure would you use to represent…
	Slide 9: Hands-on What data structure would you use to represent…
	Slide 10: Hands-on What data structure would you use to represent…
	Slide 11: You develop your code on a small data set, how is it going to scale to the complete data set?
	Slide 12: How performance scales: big-O
	Slide 13: Hands-on: Operations on lists
	Slide 14: Hands-on: Operations on lists
	Slide 15: Example: Find common words
	Slide 16: Implementation with two for-loops
	Slide 17: Implementation with two for-loops
	Slide 18: Implementation with sorted lists
	Slide 19: Implementation with sorted lists
	Slide 20: Implementation with sets
	Slide 21: Implementation with sets
	Slide 22: Basic reference sheet about Python data structures
	Slide 23: Hands-on
	Slide 24: How does rewriting in C change the performance? (rewriting in C, parallelization; same algorithm)
	Slide 25: How does rewriting in C change the performance? (rewriting in C, parallelization; same algorithm)
	Slide 26: How does rewriting in C change the performance? (rewriting in C, parallelization; same algorithm)
	Slide 27: How does rewriting in C change the performance? (rewriting in C, parallelization; same algorithm)
	Slide 28: COMING UP NEXT: NumPy and the array data structure

	Untitled Section
	Slide 29
	Slide 30: NumPy – huh, yeah – what’s it good for?
	Slide 31: NumPy – huh, yeah – what’s it good for?
	Slide 32: Efficiency of NumPy
	Slide 33: Efficiency of NumPy
	Slide 34: NumPy’s memory efficiency
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Fancy indexing in NumPy – reference slide
	Slide 47: Operations that only change the metadata return a “view “ of the original memory block, otherwise a new memory block needs to be allocated, returning a “copy”
	Slide 48: NumPy views and copies
	Slide 49: NumPy views and copies
	Slide 50: A special kind of view: broadcasting operations
	Slide 51: A special kind of view: broadcasting operations
	Slide 52: NumPy uses broadcasting to perform operation on arrays of different shape without having to allocate extra memory
	Slide 53: Broadcasting notebook summary
	Slide 54
	Slide 55: For-loops in Python vs in C
	Slide 56
	Slide 57
	Slide 58: For-loops in Python vs in C
	Slide 59: Exercise: vectorize the code

	Untitled Section
	Slide 60
	Slide 61: Spreadsheets and databases rule the world!
	Slide 62: What is tabular data?
	Slide 63: What is tabular data?
	Slide 64: Many tools to handle tabular data
	Slide 65: Tabular data ideas and operations are universal for all tabular data tools
	Slide 66: Introduction to Pandas
	Slide 67: Introduction to Pandas
	Slide 68: Basic Pandas reference slide
	Slide 69: Tabular data example from the lab
	Slide 70: Variables
	Slide 71: Variables
	Slide 72: Variables
	Slide 73: Variables
	Slide 74: Hands-on Let’s have a look at the neural data
	Slide 75: TABULAR DATA OPERATIONS
	Slide 76: Common operations on tabular data
	Slide 77: Joins
	Slide 78: Join operations: combining informations from multiple tables
	Slide 79: Join operations
	Slide 80: Join operations
	Slide 81: Hands-on
	Slide 82: Split-apply-combine
	Slide 83: The basic structure of most numerical analyses
	Slide 84: Split-apply-combine operations
	Slide 85: Split-apply-combine operations
	Slide 86
	Slide 87
	Slide 88: Hands-on
	Slide 89: Hands-on
	Slide 90: Tidy Data
	Slide 91: Same data, different organization Which one is best for data analysis?
	Slide 92: Same data, different organization Which one is best for data analysis?
	Slide 93: Tidy data
	Slide 94: Hands-on
	Slide 95: Hands-on
	Slide 96: Messy data
	Slide 97: The life-changing magic of tidying up data
	Slide 98: The life-changing magic of tidying up data
	Slide 99: The life-changing magic of tidying up data
	Slide 100: Hands-on
	Slide 101: Why is tidy data good?
	Slide 102: Window functions
	Slide 103: Window functions: grouped row-by-row operations
	Slide 104: Window functions
	Slide 105: Window functions
	Slide 106: Window functions operations
	Slide 107: Hands-on
	Slide 108: Global summary
	Slide 109: What we didn’t talk about
	Slide 110: Thank you!
	Slide 111
	Slide 112: Data organization
	Slide 113: Organizing multiple tables
	Slide 114: Dealing with changes in the data

