add updated exercise

This commit is contained in:
morales-gregorio 2024-08-29 17:30:29 +02:00
parent 47fa8f66c0
commit 86e99bb814
3 changed files with 144 additions and 0 deletions

View file

@ -0,0 +1,67 @@
import sys
import collections
import numpy as np
dts = collections.defaultdict(dict)
for fname in sys.argv[1:]:
values = open(fname).read().split()
n1 = int(values[0])
n2 = int(values[1])
dt = float(values[2])
dts[n1][n2] = dt
print(dts)
N1 = max(dts)
N2 = max(max(v) for v in dts.values())
print(N1, N2)
x = np.empty((N1 + 1, N2 + 1))
for n1, values in dts.items():
for n2, v in values.items():
x[n1, n2] = v
x[:, 0] = np.nan
x[0, :] = np.nan
print(x)
from matplotlib import pyplot
fig, axes = pyplot.subplots()
im = axes.imshow(x, origin='lower')
axes.set_ylabel('# processes')
axes.set_xlabel('# threads')
axes.spines[['right', 'top']].set_visible(False)
axes.set_title('time')
fig.colorbar(im, ax=axes, label='s')
fig_small, axes = pyplot.subplots()
im = axes.imshow(x[:5, :5], origin='lower')
axes.set_ylabel('# processes')
axes.set_xlabel('# threads')
axes.spines[['right', 'top']].set_visible(False)
axes.set_title('time')
fig_small.colorbar(im, ax=axes, label='s')
workers = np.arange(N1 + 1)[:, None] * np.arange(N2 + 1)
speedup = x[1,1] / x
speedup[:, 0] = np.nan
speedup[0, :] = np.nan
figs, axes = pyplot.subplots()
im = axes.imshow(speedup, origin='lower')
axes.set_ylabel('# processes')
axes.set_xlabel('# threads')
axes.spines[['right', 'top']].set_visible(False)
axes.set_title('speedup')
figs.colorbar(im, ax=axes, label='s')
fig.savefig('time.svg')
fig_small.savefig('time_inset.svg')
figs.savefig('speedup.svg')
pyplot.show()

View file

@ -0,0 +1,69 @@
import os
import sys
from multiprocessing import Pool as ProcessPool
import time
def process_image(fname):
n_threads = os.getenv('OMP_NUM_THREADS', '(unset)')
print(f"Worker {fname=} OMP_NUM_THREADS={n_threads}")
# An image is an array with width, height and three (RGB) color channels
# (Sometimes there is a transparency channel too: RGBA)
im = Image.open(fname)
try:
A = np.median(im, axis=2)[::4, ::4]
except:
A = np.array(im)[::4, ::4]
# Decompose image
U, S, Vh = np.linalg.svd(A)
# Remove first singular value
S[0] = 0
smat = np.zeros(A.shape, dtype=complex)
smat[:min(A.shape), :min(A.shape)] = np.diag(S)
# Re-compose image
A = np.dot(U, np.dot(smat, Vh)).real
A = (256*(A - A.min())/A.max()).astype('uint8')
return A
if __name__ == '__main__':
n_processes = int(sys.argv[1])
n_threads = int(sys.argv[2])
fnames = sys.argv[3:]
# Check that the output folders exist, or create them if needed
if not os.path.isdir('processed_images'): os.mkdir('processed_images')
if not os.path.isdir('timings'): os.mkdir('timings')
print(f"Controller with {n_processes} processes and {n_threads} threads / worker")
# The environment that is set in the parent is inherited by child workers,
# we need to set the variable before numpy is imported!
os.environ['OMP_NUM_THREADS'] = str(n_threads)
# We delay the import of numpy because we want to set OMP_NUM_THREADS.
# We delay the import of PIL in case it uses numpy internally.
import numpy as np
from PIL import Image
# Time the execution
start_time = time.time()
with ProcessPool(n_processes) as p:
new_images = p.map(process_image, fnames)
elapsed_time = time.time() - start_time
for im, fname in zip(new_images, fnames):
im = Image.fromarray(im)
im.save(fname.replace('images', 'processed_images'))
print(f'{n_processes} processes and {n_threads} threads and {len(fnames)} jobs: {elapsed_time}')
# IO: Save the timing to a unique txt file
filename = f'timings/{n_processes:02}_processes_{n_threads:02}_threads.txt'
with open(filename, 'w') as file:
file.write(f'{n_processes} {n_threads} {elapsed_time:.6f}')

View file

@ -0,0 +1,8 @@
# This is bash, it executes the python script multiple times
for i in {1..10}
do
for j in {1..10}
do
python process_images.py $i $j images/*
done
done