add updated exercise
This commit is contained in:
parent
47fa8f66c0
commit
86e99bb814
67
exercises/exerciseC/plot.py
Normal file
67
exercises/exerciseC/plot.py
Normal file
|
@ -0,0 +1,67 @@
|
|||
import sys
|
||||
import collections
|
||||
import numpy as np
|
||||
|
||||
dts = collections.defaultdict(dict)
|
||||
|
||||
for fname in sys.argv[1:]:
|
||||
values = open(fname).read().split()
|
||||
n1 = int(values[0])
|
||||
n2 = int(values[1])
|
||||
dt = float(values[2])
|
||||
|
||||
dts[n1][n2] = dt
|
||||
|
||||
print(dts)
|
||||
N1 = max(dts)
|
||||
N2 = max(max(v) for v in dts.values())
|
||||
|
||||
print(N1, N2)
|
||||
|
||||
x = np.empty((N1 + 1, N2 + 1))
|
||||
for n1, values in dts.items():
|
||||
for n2, v in values.items():
|
||||
x[n1, n2] = v
|
||||
|
||||
x[:, 0] = np.nan
|
||||
x[0, :] = np.nan
|
||||
|
||||
print(x)
|
||||
|
||||
from matplotlib import pyplot
|
||||
|
||||
fig, axes = pyplot.subplots()
|
||||
im = axes.imshow(x, origin='lower')
|
||||
axes.set_ylabel('# processes')
|
||||
axes.set_xlabel('# threads')
|
||||
axes.spines[['right', 'top']].set_visible(False)
|
||||
axes.set_title('time')
|
||||
fig.colorbar(im, ax=axes, label='s')
|
||||
|
||||
fig_small, axes = pyplot.subplots()
|
||||
im = axes.imshow(x[:5, :5], origin='lower')
|
||||
axes.set_ylabel('# processes')
|
||||
axes.set_xlabel('# threads')
|
||||
axes.spines[['right', 'top']].set_visible(False)
|
||||
axes.set_title('time')
|
||||
fig_small.colorbar(im, ax=axes, label='s')
|
||||
|
||||
workers = np.arange(N1 + 1)[:, None] * np.arange(N2 + 1)
|
||||
speedup = x[1,1] / x
|
||||
|
||||
speedup[:, 0] = np.nan
|
||||
speedup[0, :] = np.nan
|
||||
|
||||
figs, axes = pyplot.subplots()
|
||||
im = axes.imshow(speedup, origin='lower')
|
||||
axes.set_ylabel('# processes')
|
||||
axes.set_xlabel('# threads')
|
||||
axes.spines[['right', 'top']].set_visible(False)
|
||||
axes.set_title('speedup')
|
||||
figs.colorbar(im, ax=axes, label='s')
|
||||
|
||||
fig.savefig('time.svg')
|
||||
fig_small.savefig('time_inset.svg')
|
||||
figs.savefig('speedup.svg')
|
||||
|
||||
pyplot.show()
|
69
exercises/exerciseC/process_images.py
Normal file
69
exercises/exerciseC/process_images.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
import os
|
||||
import sys
|
||||
from multiprocessing import Pool as ProcessPool
|
||||
import time
|
||||
|
||||
def process_image(fname):
|
||||
n_threads = os.getenv('OMP_NUM_THREADS', '(unset)')
|
||||
print(f"Worker {fname=} OMP_NUM_THREADS={n_threads}")
|
||||
|
||||
# An image is an array with width, height and three (RGB) color channels
|
||||
# (Sometimes there is a transparency channel too: RGBA)
|
||||
im = Image.open(fname)
|
||||
try:
|
||||
A = np.median(im, axis=2)[::4, ::4]
|
||||
except:
|
||||
A = np.array(im)[::4, ::4]
|
||||
|
||||
# Decompose image
|
||||
U, S, Vh = np.linalg.svd(A)
|
||||
|
||||
# Remove first singular value
|
||||
S[0] = 0
|
||||
smat = np.zeros(A.shape, dtype=complex)
|
||||
smat[:min(A.shape), :min(A.shape)] = np.diag(S)
|
||||
|
||||
# Re-compose image
|
||||
A = np.dot(U, np.dot(smat, Vh)).real
|
||||
A = (256*(A - A.min())/A.max()).astype('uint8')
|
||||
|
||||
return A
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
n_processes = int(sys.argv[1])
|
||||
n_threads = int(sys.argv[2])
|
||||
fnames = sys.argv[3:]
|
||||
|
||||
# Check that the output folders exist, or create them if needed
|
||||
if not os.path.isdir('processed_images'): os.mkdir('processed_images')
|
||||
if not os.path.isdir('timings'): os.mkdir('timings')
|
||||
|
||||
print(f"Controller with {n_processes} processes and {n_threads} threads / worker")
|
||||
|
||||
# The environment that is set in the parent is inherited by child workers,
|
||||
# we need to set the variable before numpy is imported!
|
||||
os.environ['OMP_NUM_THREADS'] = str(n_threads)
|
||||
|
||||
# We delay the import of numpy because we want to set OMP_NUM_THREADS.
|
||||
# We delay the import of PIL in case it uses numpy internally.
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
# Time the execution
|
||||
start_time = time.time()
|
||||
with ProcessPool(n_processes) as p:
|
||||
new_images = p.map(process_image, fnames)
|
||||
elapsed_time = time.time() - start_time
|
||||
|
||||
for im, fname in zip(new_images, fnames):
|
||||
im = Image.fromarray(im)
|
||||
im.save(fname.replace('images', 'processed_images'))
|
||||
|
||||
print(f'{n_processes} processes and {n_threads} threads and {len(fnames)} jobs: {elapsed_time}')
|
||||
|
||||
# IO: Save the timing to a unique txt file
|
||||
filename = f'timings/{n_processes:02}_processes_{n_threads:02}_threads.txt'
|
||||
with open(filename, 'w') as file:
|
||||
file.write(f'{n_processes} {n_threads} {elapsed_time:.6f}')
|
||||
|
8
exercises/exerciseC/run_with_all_configurations.sh
Normal file
8
exercises/exerciseC/run_with_all_configurations.sh
Normal file
|
@ -0,0 +1,8 @@
|
|||
# This is bash, it executes the python script multiple times
|
||||
for i in {1..10}
|
||||
do
|
||||
for j in {1..10}
|
||||
do
|
||||
python process_images.py $i $j images/*
|
||||
done
|
||||
done
|
Loading…
Reference in a new issue