update exerciseC
This commit is contained in:
parent
8c7ed4a1a9
commit
b1a8862eb8
|
@ -1,67 +1,53 @@
|
|||
import sys
|
||||
import collections
|
||||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patheffects as PathEffects
|
||||
|
||||
dts = collections.defaultdict(dict)
|
||||
N_processes = 5
|
||||
N_threads = 5
|
||||
|
||||
for fname in sys.argv[1:]:
|
||||
values = open(fname).read().split()
|
||||
n1 = int(values[0])
|
||||
n2 = int(values[1])
|
||||
# Load measured timings
|
||||
times = np.empty((N_processes, N_threads))
|
||||
for fname in os.listdir('timings'):
|
||||
values = open(f'timings/{fname}').read().split()
|
||||
n_processes = int(values[0])
|
||||
n_threads = int(values[1])
|
||||
dt = float(values[2])
|
||||
times[n_processes-1][n_threads-1] = dt
|
||||
print(times)
|
||||
|
||||
dts[n1][n2] = dt
|
||||
""" Plot measured time"""
|
||||
fig_time, axs_time = plt.subplots()
|
||||
im = axs_time.imshow(times.T, origin='lower')
|
||||
axs_time.set_title('Computation time')
|
||||
fig_time.colorbar(im, ax=axs_time, label='Measured computation time (s)')
|
||||
|
||||
print(dts)
|
||||
N1 = max(dts)
|
||||
N2 = max(max(v) for v in dts.values())
|
||||
""" Plot speedup """
|
||||
workers = np.arange(N_processes + 1)[:, None] * np.arange(N_threads + 1)
|
||||
speedup = times[0, 0] / times
|
||||
|
||||
print(N1, N2)
|
||||
fig_speedup, axs_speedup = plt.subplots()
|
||||
im = axs_speedup.imshow(speedup.T, origin='lower')
|
||||
axs_speedup.set_title('Computation speed-up')
|
||||
fig_speedup.colorbar(im, ax=axs_speedup, label='Speed-up')
|
||||
|
||||
x = np.empty((N1 + 1, N2 + 1))
|
||||
for n1, values in dts.items():
|
||||
for n2, v in values.items():
|
||||
x[n1, n2] = v
|
||||
# Set same style for both plots
|
||||
for axs, data in zip([axs_time, axs_speedup], [times, speedup]):
|
||||
axs.set_xlabel('# processes')
|
||||
axs.set_ylabel('# threads')
|
||||
axs.set_xticks(np.arange(N_processes))
|
||||
axs.set_xticklabels(np.arange(N_processes)+1)
|
||||
axs.set_yticks(np.arange(N_threads))
|
||||
axs.set_yticklabels(np.arange(N_threads)+1)
|
||||
|
||||
x[:, 0] = np.nan
|
||||
x[0, :] = np.nan
|
||||
for i in range(N_processes):
|
||||
for j in range(N_threads):
|
||||
txt = axs.text(i, j, f'{data[i, j]:.2f}', fontsize=10, color='w',
|
||||
ha='center', va='center', fontweight='bold')
|
||||
txt.set_path_effects([PathEffects.withStroke(linewidth=0.5, foreground='k')])
|
||||
axs.spines[['right', 'top']].set_visible(False)
|
||||
|
||||
print(x)
|
||||
# Save plots
|
||||
fig_time.savefig('time.png', dpi=300)
|
||||
fig_speedup.savefig('speedup.png', dpi=300)
|
||||
|
||||
from matplotlib import pyplot
|
||||
|
||||
fig, axes = pyplot.subplots()
|
||||
im = axes.imshow(x, origin='lower')
|
||||
axes.set_ylabel('# processes')
|
||||
axes.set_xlabel('# threads')
|
||||
axes.spines[['right', 'top']].set_visible(False)
|
||||
axes.set_title('time')
|
||||
fig.colorbar(im, ax=axes, label='s')
|
||||
|
||||
fig_small, axes = pyplot.subplots()
|
||||
im = axes.imshow(x[:5, :5], origin='lower')
|
||||
axes.set_ylabel('# processes')
|
||||
axes.set_xlabel('# threads')
|
||||
axes.spines[['right', 'top']].set_visible(False)
|
||||
axes.set_title('time')
|
||||
fig_small.colorbar(im, ax=axes, label='s')
|
||||
|
||||
workers = np.arange(N1 + 1)[:, None] * np.arange(N2 + 1)
|
||||
speedup = x[1,1] / x
|
||||
|
||||
speedup[:, 0] = np.nan
|
||||
speedup[0, :] = np.nan
|
||||
|
||||
figs, axes = pyplot.subplots()
|
||||
im = axes.imshow(speedup, origin='lower')
|
||||
axes.set_ylabel('# processes')
|
||||
axes.set_xlabel('# threads')
|
||||
axes.spines[['right', 'top']].set_visible(False)
|
||||
axes.set_title('speedup')
|
||||
figs.colorbar(im, ax=axes, label='s')
|
||||
|
||||
fig.savefig('time.svg')
|
||||
fig_small.savefig('time_inset.svg')
|
||||
figs.savefig('speedup.svg')
|
||||
|
||||
pyplot.show()
|
||||
|
|
|
@ -3,17 +3,11 @@ import sys
|
|||
from multiprocessing import Pool as ProcessPool
|
||||
import time
|
||||
|
||||
def process_image(fname):
|
||||
n_threads = os.getenv('OMP_NUM_THREADS', '(unset)')
|
||||
print(f"Worker {fname=} OMP_NUM_THREADS={n_threads}")
|
||||
def process_image(input_tuple):
|
||||
|
||||
# An image is an array with width, height and three (RGB) color channels
|
||||
# (Sometimes there is a transparency channel too: RGBA)
|
||||
im = Image.open(fname)
|
||||
try:
|
||||
A = np.median(im, axis=2)[::4, ::4]
|
||||
except:
|
||||
A = np.array(im)[::4, ::4]
|
||||
fname, A = input_tuple
|
||||
n_threads = os.getenv('OMP_NUM_THREADS', '(unset)')
|
||||
print(f"Worker {fname=} OMP_NUM_THREADS={n_threads}", flush=True)
|
||||
|
||||
# Decompose image
|
||||
U, S, Vh = np.linalg.svd(A)
|
||||
|
@ -36,10 +30,10 @@ if __name__ == '__main__':
|
|||
fnames = sys.argv[3:]
|
||||
|
||||
# Check that the output folders exist, or create them if needed
|
||||
if not os.path.isdir('processed_images'): os.mkdir('processed_images')
|
||||
if not os.path.isdir('timings'): os.mkdir('timings')
|
||||
if not os.path.isdir('processed_images'): os.mkdir('processed_images')
|
||||
|
||||
print(f"Controller with {n_processes} processes and {n_threads} threads / worker")
|
||||
print(f"Controller with {n_processes} processes and {n_threads} threads / worker", flush=True)
|
||||
|
||||
# The environment that is set in the parent is inherited by child workers,
|
||||
# we need to set the variable before numpy is imported!
|
||||
|
@ -50,19 +44,28 @@ if __name__ == '__main__':
|
|||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
# Time the execution
|
||||
# I/O Load the images
|
||||
image_arrays = []
|
||||
for fname in fnames:
|
||||
im = Image.open(fname)
|
||||
A = np.array(im)
|
||||
image_arrays.append((fname, A))
|
||||
|
||||
# Time the execution of the pool map
|
||||
start_time = time.time()
|
||||
with ProcessPool(n_processes) as p:
|
||||
new_images = p.map(process_image, fnames)
|
||||
new_images = p.map(process_image, image_arrays)
|
||||
elapsed_time = time.time() - start_time
|
||||
|
||||
# I/O save the processed images
|
||||
for im, fname in zip(new_images, fnames):
|
||||
im = Image.fromarray(im)
|
||||
im.save(fname.replace('images', 'processed_images'))
|
||||
|
||||
print(f'{n_processes} processes and {n_threads} threads and {len(fnames)} jobs: {elapsed_time}')
|
||||
print(f'{n_processes} processes and {n_threads} threads and {len(fnames)} jobs: {elapsed_time}\n',
|
||||
flush=True)
|
||||
|
||||
# IO: Save the timing to a unique txt file
|
||||
# I/O: Save the timing to a unique txt file
|
||||
filename = f'timings/{n_processes:02}_processes_{n_threads:02}_threads.txt'
|
||||
with open(filename, 'w') as file:
|
||||
file.write(f'{n_processes} {n_threads} {elapsed_time:.6f}')
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
# This is bash, it executes the python script multiple times
|
||||
for i in {1..10}
|
||||
# This is bash
|
||||
# It runs the python script multiple times with different arguments
|
||||
for i in {1..5} # Number of processes
|
||||
do
|
||||
for j in {1..10}
|
||||
for j in {1..5} # Number of threads
|
||||
do
|
||||
python process_images.py $i $j images/*
|
||||
done
|
||||
|
|
Loading…
Reference in a new issue