
Parallel Part III

Outline

● Processes, threads and THE GIL

● Hands-on investigations of embarrassingly parallel problems

A. Multithreading with NumPy

B. The multiprocessing package

C. Blending processes and threads

● Going further

● Wrap-up

2

Going further

3

Topics

● Asyncio and coroutines

● The near-future: sub-interpreters

● Larger-than-memory problems

● Not-embarrassingly-parallel problems

● Other tools

● Parallelism on clusters
4

Concurrency in Python

Concurrency: multiple tasks making progress at the same time.

● Parallelism is a type of concurrency.

1. Multithreading (<=2.3)

2. Multiprocessing (<=2.6)

3. Coroutines and asyncio (3.4)

4. Sub-interpreters (3.12)

See [1] for more discussion.

5

The asyncio package

6

As of Python 3.4.

Concurrent but not parallel.

Single thread that can switch between tasks at

points you specify.

Use case: slow I/O with many connections [2].

● E.g., web scraping.

A bit of a learning curve.

Dakos example in extras/! Serial, naïve async, async.

Pseudocode
Inspired by [3]

async def main():

 urls = [‘www.yes.com’,

 ‘www.no.com’]

 # asynchronously collect

 # url content with 1 thread

 content = await scrape(urls)

 # process content here...

Sub-interpreters.

7

Different Python interpreters within the same process.

● Own GIL, shared memory.

Less time to spin up

compared to

multiprocessing [4]:

Released with 3.12. Still

undergoing bug fixes. [1]

Larger-than-memory problems

8

Consider a problem: calculating the mean value of each column in a numpy array,

where the array is so big that you cannot hold it in memory.

Discuss for a minute with your partner: what code could you write to get around

this problem?

A pseudocode solution
Break the array into n_chunks vertical chunks.

initialize mean_values to array of zeros

for each chunk in the array:

load the chunk into memory

calculate the mean values of all columns

divide the chunk mean values by n_chunks

add the result to mean_values

9

mean_values[i]

mean_values[i+1]

mean(chunk
)

n_chunk

Not-embarrassingly parallel problems

10

It gets complicated.

If I/O bound, perhaps asyncio.

CPU-bound...

● MPI: Message Passing Interface. De facto standard for low-level massive

parallelization. https://github.com/mpi4py/mpi4py/

● Slides at end of deck.

https://github.com/mpi4py/mpi4py/

Other Python packages for parallel computing

● https://www.dask.org/ (data objects [arrays, dataframes] for scaled computation, from

laptop to cluster)

● https://snakemake.readthedocs.io/en/stable/index.html (tool to create reproducible and

scalable analyses)

● https://ipyparallel.readthedocs.io/en/latest/ (parallel IPython)

● https://github.com/ray-project/ray (parallelization for ML-style workflows)

● https://github.com/modin-project/modin (parallel pandas)

● https://www.bodo.ai/ (SQL & data processing)

● https://spark.apache.org/docs/latest/api/python/index.html (big data analytics)

11

https://www.dask.org/
https://snakemake.readthedocs.io/en/stable/index.html
https://ipyparallel.readthedocs.io/en/latest/
https://github.com/ray-project/ray
https://github.com/modin-project/modin
https://www.bodo.ai/
https://spark.apache.org/docs/latest/api/python/index.html

On the cluster at your institute

12

If a parallel Python workflow is available, use it.

If no workflow is available, be ready for challenges.

● Efficacy of certain packages is cluster-dependent.

Wrapping up

13

Outline

● Processes, threads and THE GIL

● Hands-on investigations of

embarrassingly parallel problems

A. Multithreading with NumPy

B. The multiprocessing package

C. Blending processes and threads

● Going further

● Wrap-up

14

Thanks!

15

Supplementary material

16

Further reading

1. 4 concurrency in Python and subinterpreters Python subinterpreters and free-threading [LWN.net]

2. Concurrency in Python. Note that code snippets are a little outdated. Async Python: The Different

Forms of Concurrency · Abu Ashraf Masnun

3. Example of webscraping with asyncio Asynchronous Web Scraping in Python [2024] - ZenRows

4. Sub-interpreters in 3.12 https://tonybaloney.github.io/posts/sub-interpreter-web-workers.html

17

https://lwn.net/Articles/985041/
http://masnun.rocks/2016/10/06/async-python-the-different-forms-of-concurrency/
http://masnun.rocks/2016/10/06/async-python-the-different-forms-of-concurrency/
https://www.zenrows.com/blog/asynchronous-web-scraping-python#scrape-multiple-pages-asynchronously
https://tonybaloney.github.io/posts/sub-interpreter-web-workers.html

MPI (Message Passing Interface)

18

process 0 process 1

computer 0 computer 1

data
xyz

data
xyz

● MPI is a standard for passing data ("messages") between processes.
● OpenMPI/MPICH/… are C-libraries following the MPI standard.
● mpi4py allows you to use these libraries from Python to communicate between processes.

Why (not) MPI?

+ high-level of flexibility

+ high performance (when used correctly)

+ leverage the combined power of thousands of computers

- cognitive overhead

- difficult to use effectively

- debugging can is a nightmare

19(pictured: typical MPI user)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

