


Parallel Python

Aitor Morales-Gregorio
Jenni Rinker
Zbigniew Jędrzejewski-Szmek

ASPP 2024, Heraklion
Fork/clone the repo now!



Outline

● Processes, threads and THE GIL

● Hands-on investigations of embarrassingly parallel problems

A. Multithreading with NumPy

B. The multiprocessing package

C. Blending processes and threads

● Going further

● Wrap-up

4



Exercise: brainstorm

Why do we parallelize?

Talk to your partner and come up with three practical examples of where 

parallelization could be beneficial (in your work or another application).

5



Exercise: brainstorm

Why do we parallelize?

Talk to your partner and come up with three practical examples of where 

parallelization could be beneficial (in your work or another application).

In short, two reasons why:

● Speed up computations.

● Process “big” things.

As for the “how”...we’ll come back to that later.

6



Process, threads and THE GIL

7



The dakos program

8



The dakos program.

9

We need to make a single dish: DAKOS.
This requires:

1. Fetch olive oil from the pantry

2. Fetch rusks from the pantry

3. Drizzle the rusks with water

4. Drizzle the rusks with olive oil

5. Fetch tomatoes from the pantry

6. Wash the tomatoes

7. Grate the tomatoes

8. Fetch feta from the pantry

9. Grate the feta cheese

10. Combine the softened rusks, grated tomatoes, and grated 

cheese

11. Place the finished dakos in the pantry



Optimize the dakos program

10

1. Fetch olive oil from the pantry

2. Fetch rusks from the pantry

3. Drizzle the rusks with water

4. Drizzle the rusks with olive oil

5. Fetch tomatoes from the pantry

6. Wash the tomatoes

7. Grate the tomatoes

8. Fetch feta from the pantry

9. Grate the feta cheese

10. Combine the softened rusks, grated 

tomatoes, and grated cheese

11. Place the finished dakos in the pantry

chef

a stupid box 

(does actions)

workstation

place for non-fetch actions

countertop

temporarily holds things (recipe, 

intermediate ingredients, etc.)

pantry

across the street



Congratulations!

11

You have just designed a

multi-threaded process.



Decoding the metaphor
Key concepts:

● Process

○ A running program. OS assigns it space 

in memory for instructions/data.

● Thread

○ Unit of computation (i.e., set of 

instructions) that the OS sends to CPU 

for execution.

● …and others

○ Recall the computer architecture lecture!

○ NOTE this metaphor ignores caching.

12

Some* elements of our kitchen metaphor:

● Workstations
● Countertop
●  Stupid boxChef with list of tasks

● Pantry
● (extra) Restaurant owner

So which element is which?
● Workstations: 
● Countertop: 
● Chef w/tasks: 

● Pantry: 
● Restaurant owner: 

*This list is non-exhaustive. ;)

Nice explanation of processes, 
threads, memory in [1]



But there is a problem…

13

…and that problem is tomatoes.

Consider a scenario:

● The dakos program requires fetching tomatoes one-by-one.

● The “fetch tomatoes” task includes a sub-task: 

⚫ count all the tomatoes in the pantry,

⚫ take 1 tomato for the dako, and 

⚫ write on a note on the countertop how many are left in the pantry

● What happens if two chefs making dakos execute their tasks at the same 

time?

○ The number of tomatoes will be off by 1!



This problem is called a race condition

Race conditions are problematic in any multithreaded code. In Python, race 

conditions can lead to memory corruption.

To avoid race conditions, *Python implemented something special called…

*To be specific, only CPython – Python built on the C language. Other types of Python may not 

have this, but you are almost certainly using CPython.

14



The “Global Interpreter Lock” (GIL)
 

● A “mutex” (mutual exclusion) lock.

● Within the Python process, only 1 thread is 

allowed to execute pure-Python code in a 

given instance.

● The lock is acquired and released by threads, 

approximately every 100 bytecode instructions. 

Also released in other cases, e.g., I/O.

Hypothesize with your partner: 

NumPy can (and by default does) run code with 

multiple threads in parallel. How is this possible?

15



NumPy’s trick

16

NumPy interfaces with non-Python 
libraries that, by default, use as many 

threads as you have cores.

In other words, it is many
chefs disguised as one!



What does this all mean?

17

Computationally heavy, pure-Python code will generally have 0 speed-up with 

multiple threads.

Some specific packages (NumPy) get around this by spinning up multiple threads 

without the Python interpreter knowing.

Note that network- and IO-bound problems release the lock and thus can be 

handled with multithreading.

Guess: how can we get around the GIL for non-NumPy, non-I/O code?

● Instead of multiple threads, use multiple processes. 



Multiprocessing: multiple teams of chefs

18

Each process is an instance of the 

Python interpreter and therefore has its 

own GIL!

BUT processes have separate memory, 

so data must be duplicated in each 

process.

Multiple processes therefore have 

additional computational overhead and 

memory usage.

Red team and purple team split dakos 
tasks.

Each team can have 1 chef working.



To wrap things up…a pop quiz!

19

On your pair computer, please navigate to kahoot.it

and enter game pin



Outline

● Processes, threads and THE GIL

● Hands-on investigations of embarrassingly parallel problems

A. Multithreading with NumPy

B. The multiprocessing package

C. Blending processes and threads

● Going further

● Wrap-up

20



Supplementary material

21



Further reading

1. Open textbook on Operating Systems. Chapters 4, 13 and 26 are particularly nice. pages.cs.wisc.edu

22

https://pages.cs.wisc.edu/~remzi/OSTEP/#book-chapters

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

