54 lines
1.7 KiB
Python
54 lines
1.7 KiB
Python
import os
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.patheffects as PathEffects
|
|
|
|
N_processes = 5
|
|
N_threads = 5
|
|
|
|
# Load measured timings
|
|
times = np.empty((N_processes, N_threads))
|
|
for fname in os.listdir('timings'):
|
|
values = open(f'timings/{fname}').read().split()
|
|
n_processes = int(values[0])
|
|
n_threads = int(values[1])
|
|
dt = float(values[2])
|
|
times[n_processes-1][n_threads-1] = dt
|
|
print(times)
|
|
|
|
""" Plot measured time"""
|
|
fig_time, axs_time = plt.subplots()
|
|
im = axs_time.imshow(times.T, origin='lower')
|
|
axs_time.set_title('Computation time')
|
|
fig_time.colorbar(im, ax=axs_time, label='Measured computation time (s)')
|
|
|
|
""" Plot speedup """
|
|
workers = np.arange(N_processes + 1)[:, None] * np.arange(N_threads + 1)
|
|
speedup = times[0, 0] / times
|
|
|
|
fig_speedup, axs_speedup = plt.subplots()
|
|
im = axs_speedup.imshow(speedup.T, origin='lower')
|
|
axs_speedup.set_title('Computation speed-up')
|
|
fig_speedup.colorbar(im, ax=axs_speedup, label='Speed-up')
|
|
|
|
# Set same style for both plots
|
|
for axs, data in zip([axs_time, axs_speedup], [times, speedup]):
|
|
axs.set_xlabel('# processes')
|
|
axs.set_ylabel('# threads')
|
|
axs.set_xticks(np.arange(N_processes))
|
|
axs.set_xticklabels(np.arange(N_processes)+1)
|
|
axs.set_yticks(np.arange(N_threads))
|
|
axs.set_yticklabels(np.arange(N_threads)+1)
|
|
|
|
for i in range(N_processes):
|
|
for j in range(N_threads):
|
|
txt = axs.text(i, j, f'{data[i, j]:.2f}', fontsize=10, color='w',
|
|
ha='center', va='center', fontweight='bold')
|
|
txt.set_path_effects([PathEffects.withStroke(linewidth=0.5, foreground='k')])
|
|
axs.spines[['right', 'top']].set_visible(False)
|
|
|
|
# Save plots
|
|
fig_time.savefig('time.png', dpi=300)
|
|
fig_speedup.savefig('speedup.png', dpi=300)
|
|
|