Material for ASPP 2024
This commit is contained in:
commit
849682b13b
97 changed files with 8170 additions and 0 deletions
200
notebooks/walker/Step_1_classes/solution/Step_1_classes.ipynb
Normal file
200
notebooks/walker/Step_1_classes/solution/Step_1_classes.ipynb
Normal file
File diff suppressed because one or more lines are too long
91
notebooks/walker/Step_1_classes/solution/walker.py
Normal file
91
notebooks/walker/Step_1_classes/solution/walker.py
Normal file
|
@ -0,0 +1,91 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class Walker:
|
||||
""" The Walker knows how to walk at random on a context map. """
|
||||
|
||||
def __init__(self, sigma_i, sigma_j, size, map_type='flat'):
|
||||
self.sigma_i = sigma_i
|
||||
self.sigma_j = sigma_j
|
||||
self.size = size
|
||||
|
||||
if map_type == 'flat':
|
||||
context_map = np.ones((size, size))
|
||||
elif map_type == 'hills':
|
||||
grid_ii, grid_jj = np.mgrid[0:size, 0:size]
|
||||
i_waves = np.sin(grid_ii / 130) + np.sin(grid_ii / 10)
|
||||
i_waves /= i_waves.max()
|
||||
j_waves = np.sin(grid_jj / 100) + np.sin(grid_jj / 50) + \
|
||||
np.sin(grid_jj / 10)
|
||||
j_waves /= j_waves.max()
|
||||
context_map = j_waves + i_waves
|
||||
elif map_type == 'labyrinth':
|
||||
context_map = np.ones((size, size))
|
||||
context_map[50:100, 50:60] = 0
|
||||
context_map[20:89, 80:90] = 0
|
||||
context_map[90:120, 0:10] = 0
|
||||
context_map[120:size, 30:40] = 0
|
||||
context_map[180:190, 50:60] = 0
|
||||
|
||||
context_map[50:60, 50:200] = 0
|
||||
context_map[179:189, 80:130] = 0
|
||||
context_map[110:120, 0:190] = 0
|
||||
context_map[120:size, 30:40] = 0
|
||||
context_map[180:190, 50:60] = 0
|
||||
context_map /= context_map.sum()
|
||||
self.context_map = context_map
|
||||
|
||||
# Pre-compute a 2D grid of coordinates for efficiency
|
||||
self._grid_ii, self._grid_jj = np.mgrid[0:size, 0:size]
|
||||
|
||||
# --- Walker public interface
|
||||
|
||||
def sample_next_step(self, current_i, current_j, random_state=np.random):
|
||||
""" Sample a new position for the walker. """
|
||||
|
||||
# Combine the next-step proposal with the context map to get a
|
||||
# next-step probability map
|
||||
next_step_map = self._next_step_proposal(current_i, current_j)
|
||||
selection_map = self._compute_next_step_probability(next_step_map)
|
||||
|
||||
# Draw a new position from the next-step probability map
|
||||
r = random_state.rand()
|
||||
cumulative_map = np.cumsum(selection_map)
|
||||
cumulative_map = cumulative_map.reshape(selection_map.shape)
|
||||
i_next, j_next = np.argwhere(cumulative_map >= r)[0]
|
||||
|
||||
return i_next, j_next
|
||||
|
||||
# --- Walker non-public interface
|
||||
|
||||
def _next_step_proposal(self, current_i, current_j):
|
||||
""" Create the 2D proposal map for the next step of the walker. """
|
||||
|
||||
# 2D Gaussian distribution , centered at current position,
|
||||
# and with different standard deviations for i and j
|
||||
grid_ii, grid_jj = self._grid_ii, self._grid_jj
|
||||
sigma_i, sigma_j = self.sigma_i, self.sigma_j
|
||||
|
||||
rad = (
|
||||
(((grid_ii - current_i) ** 2) / (sigma_i ** 2))
|
||||
+ (((grid_jj - current_j) ** 2) / (sigma_j ** 2))
|
||||
)
|
||||
|
||||
p_next_step = np.exp(-(rad / 2.0)) / (2.0 * np.pi * sigma_i * sigma_j)
|
||||
return p_next_step / p_next_step.sum()
|
||||
|
||||
def _compute_next_step_probability(self, next_step_map):
|
||||
""" Compute the next step probability map from next step proposal and
|
||||
context map. """
|
||||
next_step_probability = next_step_map * self.context_map
|
||||
next_step_probability /= next_step_probability.sum()
|
||||
return next_step_probability
|
||||
|
||||
|
||||
def plot_trajectory(trajectory, context_map):
|
||||
""" Plot a trajectory over a context map. """
|
||||
trajectory = np.asarray(trajectory)
|
||||
plt.matshow(context_map)
|
||||
plt.plot(trajectory[:, 1], trajectory[:, 0], color='r')
|
||||
plt.show()
|
Loading…
Add table
Add a link
Reference in a new issue