
Scientific programming
patterns

Lisa Schwetlick and Pietro Berkes

What is wrong with you?!
• You studied the language
• You learned the libraries
• You coded for months

• And yet the code still feels like a 7-headed
apocalyptic monster. Changes are painful,
new features break old functionality,
reproducing previous results becomes a
git-checkout juggling exercise

August 2024, v. 3.0, CC BY-SA 4.0

The good news: you can smell it

August 2024, v. 3.0, CC BY-SA 4.0

The good news: you can smell it

August 2024, v. 3.0, CC BY-SA 4.0

What is wrong with smelly code?
Smelly code might work right now, but in time it
is going to have one or more of these issues:
• Hard to read and test: it is difficult to see an overall

structure; understanding the code in one place requires
checking other code all over
• Coupled: an update in one place requires several other

changes in other places
• Not flexible: adding new functionality and modifying

exiting features require extensive rewrites or hacks

August 2024, v. 3.0, CC BY-SA 4.0

Code should be as a construction block structure
Functions and classes group together things
that are coupled together and form the basic
blocks.
We can easily and quickly rearrange the blocks
to extend a structure or build a new one!

Flexible code is just like a block construction:
• is easy to understand in terms of blocks
• tolerates changes
• is reusable

August 2024, v. 3.0, CC BY-SA 4.0

Words that we’ll say a lot

• Library vs external code
• External code is anything that is not

in your library: your script, 3rd party
wanting to do other stuff, another
library

• Interface, API
• How you are supposed to call your

library. The list of public functions
and classes, and how to use them

• Public interface vs private interface
• Changing the public interface forces

all the external code to change

August 2024, v. 3.0, CC BY-SA 4.0

Your library

Your script Another user’s
script

“External
code”

Public interface Private interface

Chapter 1: Introduction to classes
Put together things that belong together

August 2024, v. 3.0, CC BY-SA 4.0

Classes live coding

August 2024, v. 3.0, CC BY-SA 4.0

Live Coding
notebooks/01a_Classes.ipynb

Hands-on
Add a new method to the Particle class

• Make the function update_position into a method of the class
Particle.
• Where does the position of the particle belong? Modify the class

constructor if necessary.
• Submit a PR for Issue #1 on GitHub.

August 2024, v. 3.0, CC BY-SA 4.0

Exercise
exercises/particle_update_position

Summary: Classes organize your code

• Classes help us group data and functionalities that belong together
• When used judiciously, the code becomes more usable as we get rid

of a lot of manual book-keeping; details are hidden away
• Understanding what belongs to the class and what does not is

important to keep the code flexible!
August 2024, v. 3.0, CC BY-SA 4.0

… becomes …

class Xyz:
 def __init__(self, x, y, z):
 ...
 def first_function(self):
 # Something
 def second_function(self):
 # Something else
 def third_function(self):
 # Something more

def first_function(x, y, z):
 # Something

def second_function(x, y, z):
 # Something else

def third_function(x, y, z):
 # Something more

Recap: Class structure

The constructor is used to first
populate an instance, called by
convention “self”

Classes can define “methods”, i.e.
functions that have access to the data
stored in an instance

A ”class method” can be used to build
an instance in some alternative way,
e.g. using data from a file

Here is how you create instances from
the constructor or a class method August 2024, v. 3.0, CC BY-SA 4.0

Chapter 2: Break out things that vary
independently

August 2024, v. 3.0, CC BY-SA 4.0

Excursion: let’s walk!

August 2024, v. 3.0, CC BY-SA 4.0

• Even when people think they are
holding their eyes still, they still move
around:
• Drift, microsaccades, jitter

• The movement has statistical
properties such as self avoidance,
directional persistence…
• The upcoming exercise is a simplified

version of a model Lisa is working on

Excursion: let’s walk!

August 2024, v. 3.0, CC BY-SA 4.0

Walker starts
somewhere

It could walk
one step in any
direction

It randomly
selects one step

Excursion: let’s walk!

August 2024, v. 3.0, CC BY-SA 4.0

In the next step it has the
same stepping options

By iterating this procedure,
we get a trajectory

Excursion: let’s walk!

August 2024, v. 3.0, CC BY-SA 4.0

• To make the behavior a little
bit more interesting the
walker in the exercise…
• Choses its next step from a

probability distribution
• Can also walk over a non-

uniform background, that
influences how likely it is to go
there

Background ActivationStepping Probability

The walker Functions

August 2024, v. 3.0, CC BY-SA 4.0

Live Coding
walker/Step_0_Introduction/

next_step_proposal(current_i, current_j, sigma_i, sigma_j, size)

create_context_map(size, map_type='flat')

sample_next_step(current_i, current_j, sigma_i, sigma_j, context_map,
random_state=np.random)

Combines and , and probabilistically selects the next location

Hands-on
General Notes

• All the exercises in this class are about reformatting code! You are not
expected to go into detail about how the code works- copy&pasting is
fine!
• There are many ways to solve the exercises. It is more important to

think about the implementation choices with your partner than to
finish. We will give you working code to start from at each step, so
don’t worry about finishing!

August 2024, v. 3.0, CC BY-SA 4.0

Exercise
walker/Step_1_classes/

Hands-on
Turning the walker code into a class
• Open the notebook “Step_1_classes_exercise” and follow the instructions
• Submit a PR for Issue #2 on GitHub.

August 2024, v. 3.0, CC BY-SA 4.0

Exercise
walker/Step_1_classes/

i, j = 100, 50 # initial position
sigma_i, sigma_j = 3, 4 # parameters of the next step map
size = 200 # size of the image
context_map = create_context_map(size, 'hills') # fixed context map

Sample a next step 1000 times
trajectory = []
for _ in range(1000):
 i, j = sample_next_step(i, j, sigma_i, sigma_j, context_map)
 trajectory.append((i, j))

From… To… ?
walker = Walker(sigma_i=3, sigma_j=4, ...)

Sample a next step 1000 times
…

Plotting does not belong to the Walker

1. Changing or adding new way of plotting (e.g. by a
colleague) would require modifying the Walker’s
code, without changing its behavior

2. Changing the Walker behavior will typically not
modify the plotting code

3. Using your walker requires you to install matplotlib

These are smells of the fact that plotting
varies independently of the Walker

plot_trajectory_hexbin

Live Coding
walker/Step_2_plotting/

plot_trajectory

vs.

August 2024, v. 3.0, CC BY-SA 4.0

The smells of the Walker constructor

August 2024, v. 3.0, CC BY-SA 4.0

August 2024, v. 3.0, CC BY-SA 4.0

1. The constructor will become longer with more
map types

2. We cannot contribute a new map type without
modifying the code

3. It is difficult to test
4. It is not flexible, e.g. what happens if we want to

create an instance from a context map saved on
file?

These are smells of the fact that the
initialization of context_map

varies independently of the Walker

The smells of the Walker constructor

if … elif … else chain is often the smell of
independent plug-in blocks

August 2024, v. 3.0, CC BY-SA 4.0

def add_block(blocks, size, type):

 if type == ‘circle’:
 # build circle of given size

 block =

 elif type == ‘square’:
 # build square of given size

 block =

 elif type == ‘triangle’:
 # build triangle of given size

 block =

 blocks.append(block)

add_block(blocks, size=11,
 type=‘square’)

if … elif … else chain is often the smell of
independent plug-in blocks

August 2024, v. 3.0, CC BY-SA 4.0

def add_block(blocks, size, type):

 if type == ‘circle’:
 # build circle of given size

 block =

 elif type == ‘square’:
 # build square of given size

 block =

 elif type == ‘triangle’:
 # build triangle of given size

 block =

 blocks.append(block)

block = build_square(size=11)
add_block(blocks, block)

def build_circle(size):
 """ Build a circle. """

 return

def build_square(size):
 """ Build a square. """

 return

def build_triangle(size):
 """ Build a triangle. """

 return

def add_block(blocks, block):
 blocks.append(block)

add_block(blocks, size=11,
 type=‘square’)

Hands-on
Move context map creation to separate module

• Go to the Notebook and follow the instructions there
• Submit a PR for Issue #3 on GitHub

August 2024, v. 3.0, CC BY-SA 4.0

Exercise
Walker/Step_3_break_out ...

New requirement: we need to use different next-step
proposals for different experiments

August 2024, v. 3.0, CC BY-SA 4.0

• We would like to run some
experiments with a Gaussian next
step proposal, some with a
rectangular proposal, etc.

• How can we do that?

The inheritance solution

August 2024, v. 3.0, CC BY-SA 4.0

New requirement: the way of combining next step proposal
and context map can also vary

The problem with inheritance

This combination can
now be done through
product, sum, or other

August 2024, v. 3.0, CC BY-SA 4.0

The problem with inheritance

August 2024, v. 3.0, CC BY-SA 4.0June 2023, v. 2.0, CC BY-SA 4.0

The inheritance approach leads to a
combinatorial explosion of subclasses

Gaussian
Rectangular
Jumping

Product
Sum

x

Passing varying behavior (e.g. functions) as an
argument is usually a better alternative

August 2024, v. 3.0, CC BY-SA 4.0

In this way, we can define the behavior independently of the class,
avoiding the combinatoric explosion

if … elif … else chain is often the smell of
independent plug-in blocks

August 2024, v. 3.0, CC BY-SA 4.0

def add_block(blocks, size, type):

 if type == ‘circle’:
 # build circle of given size

 block =

 elif type == ‘square’:
 # build square of given size

 block =

 elif type == ‘triangle’:
 # build triangle of given size

 block =

 blocks.append(block)

add_block(blocks, size=11,
 type=‘triangle’)

if … elif … else chain is often the smell of
independent plug-in blocks

August 2024, v. 3.0, CC BY-SA 4.0

def add_block(blocks, size, type):

 if type == ‘circle’:
 # build circle of given size

 block =

 elif type == ‘square’:
 # build square of given size

 block =

 elif type == ‘triangle’:
 # build triangle of given size

 block =

 blocks.append(block)

block = build_triangle(size=11)
add_block(blocks, block)

def build_circle(size):
 """ Build a circle. """

 return

def build_square(size):
 """ Build a square. """

 return

def build_triangle(size):
 """ Build a triangle. """

 return

def add_block(blocks, block):
 blocks.append(block)

add_block(blocks, size=11,
 type=‘triangle’)

def add_block(blocks, size, block_builder):
 block = block_builder(size)
 blocks.append(block)

if … elif … else chain is often the smell of
independent plug-in blocks

August 2024, v. 3.0, CC BY-SA 4.0

add_block(blocks, size=11,
 build_triangle)

def add_block(blocks, size, type):

 if type == ‘circle’:
 # build circle of given size

 block =

 elif type == ‘square’:
 # build square of given size

 block =

 elif type == ‘triangle’:
 # build triangle of given size

 block =

 blocks.append(block)

def build_circle(size):
 """ Build a circle. """

 return

def build_square(size):
 """ Build a square. """

 return

def build_triangle(size):
 """ Build a triangle. """

 return

add_block(blocks, size=11,
 type=‘square’)

def add_block(blocks, size, block_builder, kw_args):
 block = block_builder(**kw_args)
 blocks.append(block)

if … elif … else chain is often the smell of
independent plug-in blocks

August 2024, v. 3.0, CC BY-SA 4.0

add_block(blocks, size=11,
 build_triangle, {‘angle’: 35})

def add_block(blocks, size, type):

 if type == ‘circle’:
 # build circle of given size

 block =

 elif type == ‘square’:
 # build square of given size

 block =

 elif type == ‘triangle’:
 # build triangle of given size

 block =

 blocks.append(block)

def build_circle(size):
 """ Build a circle. """

 return

def build_square(size):
 """ Build a square. """

 return

def build_triangle(size, angle):
 """ Build a triangle. """

 return

add_block(blocks, size=11,
 type=‘square’)

Hands-on
Implement two next-step proposals
• Follow the instructions in the Notebook!
• Submit a PR for Issue #4 on GitHub.

August 2024, v. 3.0, CC BY-SA 4.0

Exercise
walker/Step_4_break_out ...

The Walker: what have we achieved?

• We can run simulations with different
combinations of context maps and next step
proposals
• New context maps and next step proposals

can be contributed by external people
without changing the code in your package,
or even knowing how it works
• We achieved flexibility and openness to

change

August 2024, v. 3.0, CC BY-SA 4.0

Chapter 3: Separate what varies at the level of
projects

August 2024, v. 3.0, CC BY-SA 4.0

The holy trinity of scientific computing

August 2024, v. 3.0, CC BY-SA 4.0

1. Provenance

2. Reproducibility

3. Organization

The holy trinity of scientific computing

August 2024, v. 3.0, CC BY-SA 4.0

1. Provenance

2. Reproducibility

3. Organization

It needs to be clear where
data and plots come from,
when and how they were

generated

All information necessary to
get the same result needs to

be saved

For your own sanity, you
should have a consistent

system for all this data and
artefacts

1. Provenance

August 2024, v. 3.0, CC BY-SA 4.0

• Data Provenance, or lineage, documents where data comes from
• Recording when and by which code the dataset has been changed
• But HOW?
• External software? Usually not specific for scientific use case.
• Folder structure/Filenames?
• Code generated meta-information files? (see next slide)

• In case of plots:
• data that generated the plots
• For work in progress plots: plt.annontate()
• Save .ipynb as pdf (with all the paths/version information in the

notebook)
• Could use metadata in images https://github.com/dfm/savefig

https://github.com/dfm/savefig

2. Reproducibility

August 2024, v. 3.0, CC BY-SA 4.0

• Save all information necessary to get
the same result again
• All input parameters to the code
• Randomness- if used, save the seed
• Which version of the code was

used?

• Serialization of intermediate steps in
the code (estimation and analysis)

2. Reproducibility

August 2024, v. 3.0, CC BY-SA 4.0

• We also recommend using file names containing a version number
or a time stamp, so that two subsequent runs do not overwrite
previous results

3. Organization

August 2024, v. 3.0, CC BY-SA 4.0

Model
Parameter
Estimation

Analysis
and

Plotting of
Results

Research Project (Modelling)

• Your research project may look something like this (or maybe you
have different steps or a subset of steps)
• In any case it is likely that you will go through the steps many times

before you‘re ready to publish your work

Data Pre-
processing

pipeline

Statistical
Analyses

Plotting of
Results

Research Project (Analytical)

OR

3. Organization

August 2024, v. 3.0, CC BY-SA 4.0

Model Parameter
Estimation

Analysis
and Plots of

Results

Research Project

Estimation
Parameters

(input)

Data

Estimated
Model

Parameters
(output)

Simulated
Data

Meta Data
from

estimation
(input,
output)

Meta Data
from

Analysis
(input,
output)

Each run has a bunch of associated data resulting folders and folders of data
where no one knows which version of the code generated it or is using it!

3. Organization
Suggestion:
• Data should always be separated from code
• The model or algorithms or things that are

applied to your data should be packages (see
packaging lecture)
• Think of “runs” as Experiments. Each experiment

has its own folder. The folder contains:
1. Minimal code that calls the model and saves the

result
2. All inputs necessary to produce the result saved

separately
3. Meta information about which version of your code

was used (and maybe a note about what you were
trying to achieve, if you want to be extra nice to
future you)

4. The result
5. Maybe the visualization of the result

August 2024, v. 3.0, CC BY-SA 4.0

Research folder

model

projects

project_1

22_08_30_experiment

22_09_01_experiment

(1) run.py

(2) inputs.json

data

(3) meta.txt

(4) result.npy

(5) visualize.ipynb

Organization

August 2024, v. 3.0, CC BY-SA 4.0

Research folder

model

projects

project_1

22_08_30_experiment

22_09_01_experiment

(1) run.py

(2) inputs.json

data

(3) meta.txt

(4) result.npy

(5) visualize.ipynb

1. Provenance

2. Reproducibility

3. Organization

Base dataset

Informative File/folder names
Info about when and how data was changed

Where does this data come from?

Organization

August 2024, v. 3.0, CC BY-SA 4.0

Research folder

model

projects

project_1

22_08_30_experiment

22_09_01_experiment

(1) run.py

(2) inputs.json

data

(3) meta.txt

(4) result.npy

(5) visualize.ipynb

1. Provenance

2. Reproducibility

3. Organization

Code package that can be re-used

Parameters, inputs, seed etc.
How do we reproduce these results?

Code version, date

Organization

August 2024, v. 3.0, CC BY-SA 4.0

Research folder

model

projects

project_1

22_08_30_experiment

22_09_01_experiment

(1) run.py

(2) inputs.json

data

(3) meta.txt

(4) result.npy

(5) visualize.ipynb

1. Provenance

2. Reproducibility

3. Organization

Split d
ata and code

Split c
ode and analyses

Separate folders for „experiments“ and „runs“

Hands On
Provenance and Reproducibility

August 2024, v. 3.0, CC BY-SA 4.0

Go through the following steps:

1. Complete the run.py script
- In the file, at the top we give the desired parameters for the run
- create a context map and walker (see previous exercises for reference)
- simulate a trajectory (see previous exercises for reference)

2. Save the trajectory using `np.save()`, and also save some metadata
3. Run the run.py script twice and confirm the results are identical by

plotting them using the provided notebook
4. Submit PR for Issue #5 on GitHub

Exercise
walker/Step_5_reproducibility/

Provenance and Reproducibility

August 2024, v. 3.0, CC BY-SA 4.0

Live Coding
walker/Step_6_load_parameters_...

Where to go from here…

• Trust your nose! When your code smells,
spend some time figuring out where the
smell come from
• Don’t get carried away: over-engineering

counts as premature optimization

August 2024, v. 3.0, CC BY-SA 4.0

Thank you!

August 2024, v. 3.0, CC BY-SA 4.0

August 2024, v. 3.0, CC BY-SA 4.0

Hands-on
Move plotting code to a new module

• Move plotting code to a separate plotting.py module
• Modify the notebook to import the plots and make sure it runs
• Add a new plotting function, plot_delta_trajectory, that plots a

scatter plot of delta_x and delta_y for a (x, y) trajectory. Observe how
we did not have to touch the walker.py file at all.
• Submit a PR for Issue #2 on GitHub.

August 2024, v. 3.0, CC BY-SA 4.0

Exercise
walker/Step 2 plotting/

Here is how to fix it, class dismissed

What are you missing? A few patterns that
make your code odor as nice as a spring
meadow

1. Group together things that belong together
2. Break out things that vary independently
3. Keep code open for extension

August 2024, v. 3.0, CC BY-SA 4.0

Keep things open for extension

August 2024, v. 3.0, CC BY-SA 4.0

Bonus material

Hooks patterns

• common cases:
• in graph traversing algorithms (e.g., depth-first search) the graph traversing is

generic, but the operation to be done with the data on the nodes is specific to
the application. Graph libraries often implement the traverversing, and allow
implementing the operation through hooks (hook when first visiting node,
and when all children are visited on the way back)
• in some UI frameworks, hooks can be added to react to certain UI events

August 2024, v. 3.0, CC BY-SA 4.0

Bonus material

Architecture discussion?

• walker.from_data(data)
• walker.fit(data)
• walker_from_data(data), return fitted instance
• fit(walker, data), return parameters

• trajectory from walker
• walker.trajectory(n_steps) (hooks might be useful)
• trajectory(walker, n_steps) (hooks not so useful – just write another

trajectory creator)

August 2024, v. 3.0, CC BY-SA 4.0

What is an API?

• How is the interface between your code and your
manager scripts?
• Other things to consider when writing your code:
• Who will be using it?

• Maybe your code has a practical application
• Even if it‘s most likely no one, imagine someone trying to replicate

your research after you publish
• Are there parts of the code you may want to use in your next

project?
• E.g. a fitting algorithm can be reused when you move on to the next

model
• E.g. a class for your data may be reusable for the next dataset

August 2024, v. 3.0, CC BY-SA 4.0

