Testing Class Material
This commit is contained in:
commit
05b1f6cdd5
70
.gitignore
vendored
Normal file
70
.gitignore
vendored
Normal file
|
@ -0,0 +1,70 @@
|
|||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
env/
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
.pytest_cache
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*,cover
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
#macos stuff
|
||||
.DS_Store
|
||||
|
||||
# PyCharm
|
||||
.idea/
|
||||
|
||||
# Jupyter
|
||||
.ipynb_checkpoints/
|
||||
|
||||
# general
|
||||
_archive/
|
6
LICENSE.txt
Normal file
6
LICENSE.txt
Normal file
|
@ -0,0 +1,6 @@
|
|||
The material in this repository is released under the
|
||||
CC Attribution-Share Alike 4.0 International
|
||||
license.
|
||||
|
||||
Full license text available at
|
||||
https://creativecommons.org/licenses/by-sa/4.0/
|
2
README.md
Normal file
2
README.md
Normal file
|
@ -0,0 +1,2 @@
|
|||
# testing_debugging_profiling
|
||||
Material for the class "Testing, debugging, profiling -- Python tools for building software"
|
BIN
continuous_integration.pdf
Normal file
BIN
continuous_integration.pdf
Normal file
Binary file not shown.
BIN
continuous_integration.pptx
Normal file
BIN
continuous_integration.pptx
Normal file
Binary file not shown.
BIN
debugging.pdf
Normal file
BIN
debugging.pdf
Normal file
Binary file not shown.
BIN
debugging.pptx
Normal file
BIN
debugging.pptx
Normal file
Binary file not shown.
BIN
extra_slides/code_organization_slides.pptx
Normal file
BIN
extra_slides/code_organization_slides.pptx
Normal file
Binary file not shown.
BIN
extra_slides/mocking.pptx
Normal file
BIN
extra_slides/mocking.pptx
Normal file
Binary file not shown.
30
extra_slides/mocking/code.py
Normal file
30
extra_slides/mocking/code.py
Normal file
|
@ -0,0 +1,30 @@
|
|||
|
||||
>>> from smtplib import SMTP
|
||||
>>> mock_smtp = Mock(spec=SMTP)
|
||||
|
||||
>>> isinstance(mock_smtp, SMTP)
|
||||
True
|
||||
|
||||
>>> mock_smtp.<TAB>
|
||||
mock_smtp.assert_any_call mock_smtp.attach_mock mock_smtp.call_args
|
||||
mock_smtp.assert_called_once_with mock_smtp.auth mock_smtp.call_args_list
|
||||
mock_smtp.assert_called_with mock_smtp.auth_cram_md5 mock_smtp.call_count >
|
||||
mock_smtp.assert_has_calls mock_smtp.auth_login mock_smtp.called
|
||||
mock_smtp.assert_not_called mock_smtp.auth_plain mock_smtp.close
|
||||
|
||||
>>> mock_smtp.bogus
|
||||
---------------------------------------------------------------------------
|
||||
AttributeError Traceback (most recent call last)
|
||||
<ipython-input-17-4856e93b6e10> in <module>()
|
||||
----> 1 mock_smtp.bogus
|
||||
|
||||
/Users/pberkes/miniconda3/envs/gnode/lib/python3.5/unittest/mock.py in __getattr__(self, name)
|
||||
576 elif self._mock_methods is not None:
|
||||
577 if name not in self._mock_methods or name in _all_magics:
|
||||
--> 578 raise AttributeError("Mock object has no attribute %r" % name)
|
||||
579 elif _is_magic(name):
|
||||
580 raise AttributeError(name)
|
||||
|
||||
AttributeError: Mock object has no attribute 'bogus'
|
||||
|
||||
|
64
extra_slides/mocking/demo_Mock.py
Normal file
64
extra_slides/mocking/demo_Mock.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
##### Mock basic
|
||||
m = Mock()
|
||||
m.x = 3
|
||||
m.x
|
||||
m.f(1,2,3)
|
||||
m.whatever(3, key=2)
|
||||
m
|
||||
m.f
|
||||
m.g
|
||||
|
||||
##### special attributes and assert methods
|
||||
mock=Mock()
|
||||
mock.f(2,3)
|
||||
mock.f('a')
|
||||
|
||||
mock.f.called
|
||||
mock.add.called
|
||||
mock.f.called
|
||||
mock.f.call_args
|
||||
mock.f.call_count
|
||||
mock.f.call_args_list
|
||||
mock.f.assert_called_with('a')
|
||||
mock.f.assert_called_once_with('a')
|
||||
mock.f.assert_called_with(2, 3)
|
||||
mock.f.assert_any_call(2, 3)
|
||||
mock.f.assert_has_calls(['a', (2,3)])
|
||||
|
||||
#### return_value and side_effect
|
||||
mock.g.return_value = 7
|
||||
mock.g(32)
|
||||
mock.g('r')
|
||||
|
||||
# useful to simulate file errors or server errors
|
||||
mock.g.side_effect = Exception('Noooo')
|
||||
mock.g(2)
|
||||
mock.g.side_effect = lambda x: x.append(2)
|
||||
a=[1]
|
||||
mock.g(a)
|
||||
a
|
||||
|
||||
mock.g.side_effect = [1, 4, 5]
|
||||
mock.g()
|
||||
mock.g()
|
||||
mock.g()
|
||||
mock.g()
|
||||
|
||||
#####
|
||||
mock = Mock()
|
||||
mock.f(3,4)
|
||||
mock.g('a')
|
||||
mock.f.a()
|
||||
mock.method_calls
|
||||
|
||||
result = m.h(32)
|
||||
result(1)
|
||||
m.mock_calls
|
||||
|
||||
##### spec
|
||||
from chaco.api import Plot
|
||||
m2 = Mock(spec=Plot)
|
||||
isinstance(m2, Plot)
|
||||
m2.add
|
||||
m2.add(12,'asdfasd')
|
||||
m2.aaa
|
41
extra_slides/mocking/report.py
Normal file
41
extra_slides/mocking/report.py
Normal file
|
@ -0,0 +1,41 @@
|
|||
report_template = """
|
||||
Report
|
||||
======
|
||||
|
||||
The experiment was a {judgment}!
|
||||
Let's do this again, with a bigger budget.
|
||||
"""
|
||||
|
||||
|
||||
def send_report(result, smtp):
|
||||
if result > 0.5:
|
||||
judgment = 'big success'
|
||||
else:
|
||||
judgment = 'total failure'
|
||||
report = report_template.format(judgment=judgment)
|
||||
smtp.send_message(
|
||||
report,
|
||||
from_addr='pony@magicpony.com',
|
||||
to_addrs=['ferenc@magicpony.com'],
|
||||
)
|
||||
|
||||
|
||||
from unittest.mock import Mock
|
||||
|
||||
def test_send_report_success():
|
||||
smtp = Mock()
|
||||
|
||||
send_report(0.6, smtp)
|
||||
assert smtp.send_message.call_count == 1
|
||||
pos_args, kw_args = smtp.send_message.call_args
|
||||
message = pos_args[0]
|
||||
assert 'success' in message
|
||||
|
||||
smtp.reset_mock()
|
||||
|
||||
send_report(0.4, smtp)
|
||||
assert smtp.send_message.call_count == 1
|
||||
args, kwargs = smtp.send_message.call_args
|
||||
message = args[0]
|
||||
assert 'failure' in message
|
||||
|
13
extra_slides/mocking/telescope/telescope_driver.py
Normal file
13
extra_slides/mocking/telescope/telescope_driver.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
|
||||
def connect(address):
|
||||
import time
|
||||
time.sleep(5)
|
||||
return '1'
|
||||
|
||||
def get_angle(address):
|
||||
return 0.0
|
||||
|
||||
def set_angle(address, angle):
|
||||
if angle < 0 or angle > 1.40:
|
||||
raise IOError('Telescope jammed -- please call technical support')
|
||||
return True
|
30
extra_slides/mocking/telescope/telescope_model.py
Normal file
30
extra_slides/mocking/telescope/telescope_model.py
Normal file
|
@ -0,0 +1,30 @@
|
|||
import telescope_driver
|
||||
|
||||
|
||||
class TelescopeModel(object):
|
||||
|
||||
# Minimum safe elevation angle (see handbook).
|
||||
MIN_ANGLE = 0.0
|
||||
|
||||
# Maximum safe elevation angle (see handbook).
|
||||
MAX_ANGLE = 80.0
|
||||
|
||||
def __init__(self, address):
|
||||
self.address = address
|
||||
# Connect to telescope
|
||||
self.connection = telescope_driver.connect(address)
|
||||
# Get initial state of telescope.
|
||||
self.current_angle = telescope_driver.get_angle(self.connection)
|
||||
|
||||
def set_elevation_angle(self, angle):
|
||||
""" Set the elevation angle of the telescope (in rad).
|
||||
|
||||
If the angle is outside the range allowed by the manufacturer,
|
||||
raise a ValueError.
|
||||
"""
|
||||
|
||||
if angle < self.MIN_ANGLE or angle > self.MAX_ANGLE:
|
||||
raise ValueError('Unsafe elevation angle: {}'.format(angle))
|
||||
|
||||
telescope_driver.set_angle(self.connection, angle)
|
||||
self.current_angle = angle
|
12
extra_slides/mocking/telescope/test_telescope_model.py
Normal file
12
extra_slides/mocking/telescope/test_telescope_model.py
Normal file
|
@ -0,0 +1,12 @@
|
|||
import numpy as np
|
||||
from py.test import raises
|
||||
|
||||
from telescope_model import TelescopeModel
|
||||
|
||||
|
||||
def test_unsafe_elevation_angle():
|
||||
telescope = TelescopeModel(address='10.2.1.1')
|
||||
elevation_angle = np.pi / 2.0
|
||||
|
||||
with raises(ValueError):
|
||||
telescope.set_elevation_angle(elevation_angle)
|
|
@ -0,0 +1,29 @@
|
|||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
from py.test import raises
|
||||
|
||||
from telescope_model import TelescopeModel
|
||||
|
||||
|
||||
def test_unsafe_elevation_angle():
|
||||
with mock.patch('telescope_model.telescope_driver'):
|
||||
telescope = TelescopeModel(address='10.2.1.1')
|
||||
elevation_angle = np.pi / 2.0
|
||||
with raises(ValueError):
|
||||
telescope.set_elevation_angle(elevation_angle)
|
||||
|
||||
|
||||
def test_model_initialization():
|
||||
connection_id = 'bogus_connection'
|
||||
initial_angle = 1.23
|
||||
|
||||
with mock.patch('telescope_model.telescope_driver') as driver:
|
||||
driver.connect.return_value = connection_id
|
||||
driver.get_angle.return_value = initial_angle
|
||||
|
||||
telescope = TelescopeModel(address='10.2.1.1')
|
||||
assert telescope.connection == connection_id
|
||||
assert driver.connect.call_count == 1
|
||||
assert telescope.current_angle == initial_angle
|
||||
|
BIN
extra_slides/packaging.pptx
Normal file
BIN
extra_slides/packaging.pptx
Normal file
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 415 KiB |
22
extra_slides/packaging/noiser_project_final/noiser/main.py
Normal file
22
extra_slides/packaging/noiser_project_final/noiser/main.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
import os.path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.ndimage import imread
|
||||
from pkg_resources import resource_filename
|
||||
|
||||
from noiser.noise import white_noise
|
||||
from noiser.utils import copy_image
|
||||
|
||||
|
||||
def main():
|
||||
path = resource_filename('noiser', os.path.join('images', 'baboon_kandinsky.png'))
|
||||
print(path)
|
||||
img = imread(path)
|
||||
noisy = copy_image(white_noise(img, 20))
|
||||
plt.imshow(noisy)
|
||||
plt.draw()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,7 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def white_noise(image, std):
|
||||
noise = np.random.normal(scale=std, size=image.shape).astype(image.dtype)
|
||||
noisy = image + noise
|
||||
return noisy
|
|
@ -0,0 +1,8 @@
|
|||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='Noiser',
|
||||
version='1.0',
|
||||
packages=find_packages(),
|
||||
)
|
||||
|
|
@ -0,0 +1,24 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
|
||||
from noiser.noise import white_noise
|
||||
|
||||
|
||||
def test_white_noise():
|
||||
n_images, height, width = 201, 101, 102
|
||||
dtype = np.float32
|
||||
|
||||
# Create ``n_images`` identical image.
|
||||
base_image = np.random.rand(1, height, width, 3).astype(dtype) - 0.5
|
||||
images = np.repeat(base_image, n_images, axis=0)
|
||||
|
||||
std = 0.13
|
||||
noisy = white_noise(images, std=std)
|
||||
|
||||
# dtype and shape are preserved.
|
||||
assert noisy.dtype == dtype
|
||||
assert noisy.shape == images.shape
|
||||
|
||||
# Mean and std of noisy image match expectations.
|
||||
assert_allclose(images.mean(0), base_image[0], atol=1e-4)
|
||||
assert np.isclose((noisy - images).std(), std, atol=1e-4)
|
|
@ -0,0 +1,14 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from noiser.utils import copy_image
|
||||
|
||||
|
||||
def test_copy_image():
|
||||
height, width = 101, 102
|
||||
dtype = np.float32
|
||||
|
||||
image = np.random.rand(height, width, 3).astype(dtype)
|
||||
copy = copy_image(image)
|
||||
assert_array_equal(copy, image)
|
||||
|
15
extra_slides/packaging/noiser_project_final/noiser/utils.pyx
Normal file
15
extra_slides/packaging/noiser_project_final/noiser/utils.pyx
Normal file
|
@ -0,0 +1,15 @@
|
|||
import numpy as np
|
||||
cimport numpy as np
|
||||
|
||||
|
||||
def copy_image(np.ndarray img):
|
||||
cdef int h = img.shape[0]
|
||||
cdef int w = img.shape[1]
|
||||
cdef int c = img.shape[2]
|
||||
cdef np.ndarray copy = np.empty([h, w, c], dtype=img.dtype)
|
||||
|
||||
for i in range(h):
|
||||
for j in range(w):
|
||||
for k in range(c):
|
||||
copy[i, j, k] = img[i, j, k]
|
||||
return copy
|
29
extra_slides/packaging/noiser_project_final/setup.py
Normal file
29
extra_slides/packaging/noiser_project_final/setup.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
from Cython.Build import cythonize
|
||||
import numpy
|
||||
from setuptools import setup, find_packages
|
||||
from setuptools.extension import Extension
|
||||
|
||||
|
||||
extensions = [
|
||||
Extension(
|
||||
'noiser.utils',
|
||||
["noiser/utils.pyx"],
|
||||
include_dirs=[numpy.get_include()],
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
setup(
|
||||
name='Noiser',
|
||||
version='1.0',
|
||||
packages=find_packages(),
|
||||
ext_modules=cythonize(extensions),
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
'baboon=noiser.main:main',
|
||||
]
|
||||
},
|
||||
package_data={
|
||||
'noiser': ['images/*.png'],
|
||||
}
|
||||
)
|
31
extra_slides/profiling/residuals.py
Normal file
31
extra_slides/profiling/residuals.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
import numpy as np
|
||||
import theano
|
||||
from theano import tensor as T
|
||||
|
||||
|
||||
SLOPE = 3.1
|
||||
INTERCEPT = -1.2
|
||||
|
||||
|
||||
def residual_stats_theano(x, y):
|
||||
expected = SLOPE * x + INTERCEPT
|
||||
residuals = y - expected
|
||||
return residuals.mean(), residuals.std()
|
||||
|
||||
|
||||
x_var = T.vector()
|
||||
y_var = T.vector()
|
||||
|
||||
residual_stats = theano.function(
|
||||
inputs=[x_var, y_var],
|
||||
outputs=residual_stats_theano(x_var, y_var),
|
||||
allow_input_downcast=True,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
x = np.linspace(-10, 10, 1000)
|
||||
y = SLOPE * x + INTERCEPT
|
||||
y += np.random.normal(loc=0.1, scale=0.5, size=x.shape)
|
||||
mn, std = residual_stats(x, y)
|
||||
print('Residual mean=', mn, ', std=', std)
|
35
extra_slides/profiling/residuals_profile.py
Normal file
35
extra_slides/profiling/residuals_profile.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
import numpy as np
|
||||
import theano
|
||||
from theano import tensor as T
|
||||
|
||||
theano.config.profile_memory = True
|
||||
theano.config.profile = True
|
||||
|
||||
|
||||
SLOPE = 3.1
|
||||
INTERCEPT = -1.2
|
||||
|
||||
|
||||
def residual_stats_theano(x, y):
|
||||
expected = SLOPE * x + INTERCEPT
|
||||
residuals = y - expected
|
||||
return residuals.mean(), residuals.std()
|
||||
|
||||
|
||||
x_var = T.vector()
|
||||
y_var = T.vector()
|
||||
|
||||
residual_stats = theano.function(
|
||||
inputs=[x_var, y_var],
|
||||
outputs=residual_stats_theano(x_var, y_var),
|
||||
allow_input_downcast=True,
|
||||
profile=True,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
x = np.linspace(-10, 10, 1000)
|
||||
y = SLOPE * x + INTERCEPT
|
||||
y += np.random.normal(loc=0.1, scale=0.5, size=x.shape)
|
||||
mn, std = residual_stats(x, y)
|
||||
print('Residual mean=', mn, ', std=', std)
|
1
hands_on/bug_hunt/datastore/README
Normal file
1
hands_on/bug_hunt/datastore/README
Normal file
|
@ -0,0 +1 @@
|
|||
This is the directory used as a datastore by `file_datastore.py`.
|
113
hands_on/bug_hunt/file_datastore.py
Normal file
113
hands_on/bug_hunt/file_datastore.py
Normal file
|
@ -0,0 +1,113 @@
|
|||
import os
|
||||
|
||||
|
||||
class FileDatastore:
|
||||
"""Datastore based on a regular file system.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
base_path: str
|
||||
Filesystem path at which the data store is based.
|
||||
"""
|
||||
|
||||
def __init__(self, base_path):
|
||||
if not os.path.exists(base_path):
|
||||
raise FileNotFoundError(f'Base path {base_path} does not exist')
|
||||
if not os.path.isdir(base_path):
|
||||
raise NotADirectoryError(f'Base path {base_path} exists but is not a directory')
|
||||
|
||||
self.base_path = base_path
|
||||
|
||||
def open(self, path, mode):
|
||||
""" Open a file-like object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path: str
|
||||
Path relative to the root of the data store.
|
||||
mode: str
|
||||
Specifies the mode in which the file is opened.
|
||||
|
||||
Returns
|
||||
-------
|
||||
IO[Any]
|
||||
An open file-like object.
|
||||
"""
|
||||
path = os.path.join(self.base_path, path)
|
||||
return open(path, mode)
|
||||
|
||||
def read(self, path):
|
||||
""" Read a sequence of bytes from the data store.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path: str
|
||||
Path relative to the root of the data store.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bytes
|
||||
The sequence of bytes read from `path`.
|
||||
"""
|
||||
with self.open(path, 'rb') as f:
|
||||
data = f.read()
|
||||
return data
|
||||
|
||||
def write(self, path, data) -> None:
|
||||
""" Write a sequence of bytes to the data store.
|
||||
|
||||
`path` contains the path relative to the root of the data store, including the name
|
||||
of the file to be created. If a file already exists at `path`, it is overwritten.
|
||||
|
||||
Intermediate directories that do not exist will be created.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path: str
|
||||
Path relative to the root of the data store.
|
||||
data: bytes
|
||||
Sequence of bytes to write at `path`.
|
||||
"""
|
||||
path = os.path.join(self.base_path, path)
|
||||
self.makedirs(os.path.dirname(path))
|
||||
with self.open(path, 'wb') as f:
|
||||
f.write(data)
|
||||
|
||||
def exists(self, path):
|
||||
""" Returns True if the file exists.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path: str
|
||||
Path relative to the root of the data store.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if the file exists, false otherwise
|
||||
"""
|
||||
complete_path = os.path.join(self.base_path, path)
|
||||
return os.path.exists(complete_path)
|
||||
|
||||
def makedirs(self, path):
|
||||
""" Creates the specified directory if needed.
|
||||
|
||||
If the directories already exist, the method does not do anything.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path: str
|
||||
Path relative to the root of the data store.
|
||||
"""
|
||||
complete_path = os.path.join(self.base_path, path)
|
||||
os.makedirs(complete_path, exist_ok=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
data = b'A test! 012'
|
||||
datastore = FileDatastore(base_path='./datastore')
|
||||
datastore.write('a/mydata.bin', data)
|
||||
|
||||
# This should pass!
|
||||
# The code works correctly if `base_path` is an absolute path :-(
|
||||
assert os.path.exists('./datastore/a/mydata.bin')
|
65
hands_on/debugger/analyze_sums_and_differences.ipynb
Normal file
65
hands_on/debugger/analyze_sums_and_differences.ipynb
Normal file
|
@ -0,0 +1,65 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "30f3f04f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from debugger_example import sum_over_difference"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3632cacb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"result = sum_over_difference(7, 5)\n",
|
||||
"print(result)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "02577028",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"result = sum_over_difference(12, 12)\n",
|
||||
"print(result)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "58fc58c0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
23
hands_on/debugger/debugger_example.py
Executable file
23
hands_on/debugger/debugger_example.py
Executable file
|
@ -0,0 +1,23 @@
|
|||
def add(arg1, arg2):
|
||||
return arg1 + arg2
|
||||
|
||||
|
||||
def sub(arg1, arg2):
|
||||
return arg1 - arg2
|
||||
|
||||
|
||||
def div(arg1, arg2):
|
||||
return arg1 / arg2
|
||||
|
||||
|
||||
def sum_over_difference(arg1, arg2):
|
||||
"""Compute sum of arguments over difference of arguments."""
|
||||
arg_sum = add(arg1, arg2)
|
||||
arg_diff = sub(arg1, arg2)
|
||||
sum_over_diff = div(arg_sum, arg_diff)
|
||||
return sum_over_diff
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
result = sum_over_difference(7, 5)
|
||||
print(result)
|
33
hands_on/factorial/factorial.py
Normal file
33
hands_on/factorial/factorial.py
Normal file
|
@ -0,0 +1,33 @@
|
|||
""" Compute the factorial of a set of numbers stored in a file. """
|
||||
|
||||
def factorial(n):
|
||||
if n == 0:
|
||||
return 1
|
||||
else:
|
||||
return factorial(n-1) * n
|
||||
|
||||
|
||||
def read_data(filename):
|
||||
numbers = []
|
||||
with open(filename, 'r') as f:
|
||||
for line in f:
|
||||
number = int(line)
|
||||
numbers.append(number)
|
||||
return numbers
|
||||
|
||||
|
||||
def compute_factorials_for_list(numbers):
|
||||
factorials = []
|
||||
for number in numbers:
|
||||
result = factorial(number)
|
||||
factorials.append(result)
|
||||
return factorials
|
||||
|
||||
|
||||
def main():
|
||||
numbers = read_data('numbers.txt')
|
||||
factorials = compute_factorials_for_list(numbers)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
100000
hands_on/factorial/numbers.txt
Normal file
100000
hands_on/factorial/numbers.txt
Normal file
File diff suppressed because it is too large
Load diff
13
hands_on/factorial/test_factorial.py
Normal file
13
hands_on/factorial/test_factorial.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
""" Tests for the factorial function. """
|
||||
|
||||
from factorial import factorial
|
||||
|
||||
|
||||
def test_factorial():
|
||||
factorial_cases = [(1, 1),
|
||||
(0, 1),
|
||||
(5, 2*3*4*5),
|
||||
(30, 265252859812191058636308480000000)]
|
||||
|
||||
for n, fact_n in factorial_cases:
|
||||
assert factorial(n) == fact_n
|
8
hands_on/first/first.py
Normal file
8
hands_on/first/first.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
def times_3(x):
|
||||
""" Multiply x by 3.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : The item to multiply by 3.
|
||||
"""
|
||||
return x * 3
|
19
hands_on/first/test_first.py
Normal file
19
hands_on/first/test_first.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
from first import times_3
|
||||
|
||||
|
||||
def test_times_3_integer():
|
||||
value = 7
|
||||
expected = 21
|
||||
|
||||
result = times_3(value)
|
||||
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_times_3_string():
|
||||
value = 'wow'
|
||||
expected = 'wowwowwow'
|
||||
|
||||
result = times_3(value)
|
||||
|
||||
assert result == expected
|
8
hands_on/first_teacher/first.py
Normal file
8
hands_on/first_teacher/first.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
def times_3(x):
|
||||
""" Multiply x by 3.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : The item to multiply by 3.
|
||||
"""
|
||||
return x * 3
|
10
hands_on/local_maxima/local_maxima.py
Normal file
10
hands_on/local_maxima/local_maxima.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
def find_maxima(x):
|
||||
"""Find local maxima of x.
|
||||
|
||||
Input arguments:
|
||||
x -- 1D list of real numbers
|
||||
|
||||
Output:
|
||||
idx -- list of indices of the local maxima in x
|
||||
"""
|
||||
return []
|
10
hands_on/local_maxima_part2/local_maxima.py
Normal file
10
hands_on/local_maxima_part2/local_maxima.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
def find_maxima(x):
|
||||
"""Find local maxima of x.
|
||||
|
||||
Input arguments:
|
||||
x -- 1D list of real numbers
|
||||
|
||||
Output:
|
||||
idx -- list of indices of the local maxima in x
|
||||
"""
|
||||
return []
|
30
hands_on/local_maxima_part2/test_local_maxima.py
Normal file
30
hands_on/local_maxima_part2/test_local_maxima.py
Normal file
|
@ -0,0 +1,30 @@
|
|||
from local_maxima import find_maxima
|
||||
|
||||
|
||||
def test_find_maxima():
|
||||
values = [1, 3, -2, 0, 2, 1]
|
||||
expected = [1, 4]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_edges():
|
||||
values = [4, 2, 1, 3, 1, 5]
|
||||
expected = [0, 3, 5]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_empty():
|
||||
values = []
|
||||
expected = []
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_plateau():
|
||||
raise Exception('not yet implemented')
|
||||
|
||||
|
||||
def test_find_maxima_not_a_plateau():
|
||||
raise Exception('not yet implemented')
|
49
hands_on/local_maxima_part3_debug/local_maxima.py
Normal file
49
hands_on/local_maxima_part3_debug/local_maxima.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
def find_maxima(x):
|
||||
"""Find local maxima of x.
|
||||
|
||||
Input arguments:
|
||||
x -- 1D list of real numbers
|
||||
|
||||
Output:
|
||||
idx -- list of indices of the local maxima in x
|
||||
"""
|
||||
|
||||
maxima = []
|
||||
|
||||
len_x = len(x)
|
||||
if len_x == 0:
|
||||
return maxima
|
||||
|
||||
maxima = check_first_element(x, maxima)
|
||||
maxima = check_last_element(x, maxima)
|
||||
|
||||
# Check numbers in between
|
||||
i = 1
|
||||
while i < len_x - 1:
|
||||
if x[i] > x[i - 1]:
|
||||
# We have found a potential maximum or start of a plateau
|
||||
plateau_start = i
|
||||
while i < len_x - 1 and x[i] == x[i + 1]:
|
||||
i += 1
|
||||
plateau_end = i
|
||||
if x[plateau_end] > x[plateau_end + 1]:
|
||||
maxima.append(plateau_start)
|
||||
i += 1
|
||||
return maxima
|
||||
|
||||
|
||||
def check_first_element(x, maxima):
|
||||
if x[0] > x[1]:
|
||||
maxima.append(0)
|
||||
return maxima
|
||||
|
||||
|
||||
def check_last_element(x, maxima):
|
||||
if x[-1] > x[-2]:
|
||||
maxima.append(len(x) - 1)
|
||||
return maxima
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
result = find_maxima([1, 2, 2, 1])
|
||||
print(result)
|
107
hands_on/local_maxima_part3_debug/test_local_maxima.py
Normal file
107
hands_on/local_maxima_part3_debug/test_local_maxima.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from local_maxima import find_maxima
|
||||
|
||||
|
||||
def test_find_maxima():
|
||||
values = [1, 3, -2, 0, 2, 1]
|
||||
expected = [1, 4]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_edges():
|
||||
values = [4, 2, 1, 0, 1, 5]
|
||||
expected = [0, 5]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_empty():
|
||||
values = []
|
||||
expected = []
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_plateau():
|
||||
values = [1, 2, 2, 1]
|
||||
expected = [1]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_not_a_plateau():
|
||||
values = [1, 2, 2, 3, 1]
|
||||
expected = [3]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
# the tests below here fail, can you get them to pass?
|
||||
|
||||
|
||||
def test_find_maxima_correct_order():
|
||||
# TASK: get this test to pass
|
||||
values = [2, 1, 5, 1, 9]
|
||||
expected = [0, 2, 4]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_one_value():
|
||||
# TASK: get this test to pass
|
||||
values = [1]
|
||||
expected = [0]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_long_plateau():
|
||||
# TASK: Change the implementation for when there is a plateau
|
||||
# for uneven plateau length, return the middle index, e.g. [1, 2, *2*, 2, 1] --> [2]
|
||||
# for even plateau length, return the index left of the middle e.g. [1, 2, *2*, 2, 2, 1] --> [2]
|
||||
values = [1, 2, 2, 2, 2, 2, 1, 8, 0]
|
||||
expected = [3, 7]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_plateau_at_end():
|
||||
# TASK: make sure plateaus at the end are handled properly (see test above)
|
||||
values = [1, 2, 2]
|
||||
expected = [1]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_plateau_at_start():
|
||||
# TASK: make sure plateaus at the start are handled properly (see test above)
|
||||
values = [1, 1, 0, 0]
|
||||
expected = [0]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_all_same_values():
|
||||
# TASK: implement a check for lists where there is no local maximum
|
||||
values = [1, 1]
|
||||
expected = [0]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_letters():
|
||||
# stings can be evaluated with > and <, who knew!
|
||||
# Find an easy solution so that both "t"s are recognised as local maxima
|
||||
values = ["T", "e", "s", "t", "s", "!"]
|
||||
expected = [0, 3]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_new_inputs_to_make_current_function_fail():
|
||||
# should you actually be done with all tests, then you can think of other cases where the current function fails
|
||||
# and write tests for them and fix them
|
||||
assert False
|
1
hands_on/logistic_fun/readme.md
Normal file
1
hands_on/logistic_fun/readme.md
Normal file
|
@ -0,0 +1 @@
|
|||
This exercise is in a separate repo!
|
22
hands_on/numpy_equality/test_numpy_equality.py
Normal file
22
hands_on/numpy_equality/test_numpy_equality.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def test_equality():
|
||||
x = np.array([1, 1])
|
||||
y = np.array([2, 2])
|
||||
z = np.array([3, 3])
|
||||
assert x + y == z
|
||||
|
||||
|
||||
def test_equality_with_nan():
|
||||
x = np.array([1, np.nan])
|
||||
y = np.array([2, np.nan])
|
||||
z = np.array([3, np.nan])
|
||||
assert x + y == z
|
||||
|
||||
|
||||
def test_allclose_with_nan():
|
||||
x = np.array([1.1, np.nan])
|
||||
y = np.array([2.2, np.nan])
|
||||
z = np.array([3.3, np.nan])
|
||||
assert x + y == z
|
8
hands_on_solutions/first/first.py
Normal file
8
hands_on_solutions/first/first.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
def times_3(x):
|
||||
""" Multiply x by 3.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : The item to multiply by 3.
|
||||
"""
|
||||
return x * 3
|
28
hands_on_solutions/first/test_first.py
Normal file
28
hands_on_solutions/first/test_first.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
from first import times_3
|
||||
|
||||
|
||||
def test_times_3_integer():
|
||||
value = 7
|
||||
expected = 21
|
||||
|
||||
result = times_3(value)
|
||||
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_times_3_string():
|
||||
value = 'wow'
|
||||
expected = 'wowwowwow'
|
||||
|
||||
result = times_3(value)
|
||||
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_times_3_list():
|
||||
value = [1]
|
||||
expected = [1, 1, 1]
|
||||
|
||||
result = times_3(value)
|
||||
|
||||
assert result == expected
|
44
hands_on_solutions/local_maxima/local_maxima.py
Normal file
44
hands_on_solutions/local_maxima/local_maxima.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
def find_maxima(x):
|
||||
"""Find local maxima of x.
|
||||
|
||||
Example:
|
||||
>>> x = [1, 3, -2, 0, 2, 1]
|
||||
>>> find_maxima(x)
|
||||
[1, 4]
|
||||
|
||||
If in a local maximum several elements have the same value,
|
||||
return the left-most index.
|
||||
Example:
|
||||
>>> x = [1, 2, 2, 1]
|
||||
>>> find_maxima(x)
|
||||
[1]
|
||||
|
||||
Input arguments:
|
||||
x -- 1D list of real numbers
|
||||
|
||||
Output:
|
||||
idx -- list of indices of the local maxima in x
|
||||
"""
|
||||
|
||||
idx = []
|
||||
up = False
|
||||
down = False
|
||||
for i in range(len(x)):
|
||||
if i == 0 or x[i-1] < x[i]:
|
||||
up = True
|
||||
up_idx = i
|
||||
elif x[i-1] > x[i]:
|
||||
up = False
|
||||
|
||||
# if x[i-1] == x[i], no change
|
||||
|
||||
if i+1 == len(x) or x[i+1] < x[i]:
|
||||
down = True
|
||||
elif x[i+1] > x[i]:
|
||||
down = False
|
||||
|
||||
if up and down:
|
||||
idx.append(up_idx)
|
||||
|
||||
return idx
|
||||
|
36
hands_on_solutions/local_maxima/test_local_maxima.py
Normal file
36
hands_on_solutions/local_maxima/test_local_maxima.py
Normal file
|
@ -0,0 +1,36 @@
|
|||
from local_maxima import find_maxima
|
||||
|
||||
|
||||
def test_find_maxima():
|
||||
values = [1, 3, -2, 0, 2, 1]
|
||||
expected = [1, 4]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_edges():
|
||||
values = [4, 2, 1, 3, 1, 5]
|
||||
expected = [0, 3, 5]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_empty():
|
||||
values = []
|
||||
expected = []
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_plateau():
|
||||
values = [1, 2, 2, 1]
|
||||
expected = [1]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_not_a_plateau():
|
||||
values = [1, 2, 2, 3, 1]
|
||||
expected = [3]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
|
@ -0,0 +1,67 @@
|
|||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def find_maxima(x):
|
||||
"""Find local maxima of x.
|
||||
|
||||
Input arguments:
|
||||
x -- 1D list of real numbers
|
||||
|
||||
Output:
|
||||
idx -- list of indices of the local maxima in x
|
||||
"""
|
||||
maxima = []
|
||||
len_x = len(x)
|
||||
if len_x == 0:
|
||||
return maxima
|
||||
elif len_x == 1:
|
||||
return [0]
|
||||
|
||||
# additional checks
|
||||
if np.all([isinstance(item, str) for item in x]):
|
||||
x = [item.lower() for item in x]
|
||||
if np.all([item == x[0] for item in x]):
|
||||
return [0]
|
||||
|
||||
maxima = check_first_element(x, maxima)
|
||||
# Check numbers in between
|
||||
i = 1
|
||||
while i < len_x - 1:
|
||||
if x[i] >= x[i - 1]:
|
||||
# We have found a potential maximum or start of a plateau
|
||||
# breakpoint()
|
||||
if i == 1 and x[i] == x[i - 1]:
|
||||
plateau_start = i - 1
|
||||
else:
|
||||
plateau_start = i
|
||||
while i < len_x - 1 and x[i] == x[i + 1]:
|
||||
i += 1
|
||||
plateau_end = i
|
||||
if plateau_end == len_x - 1:
|
||||
maxima.append((plateau_end + plateau_start) // 2)
|
||||
elif x[plateau_end] > x[plateau_end + 1]:
|
||||
maxima.append((plateau_end + plateau_start) // 2)
|
||||
i += 1
|
||||
maxima = check_last_element(x, maxima)
|
||||
|
||||
return maxima
|
||||
|
||||
|
||||
def check_first_element(x, maxima):
|
||||
if x[0] > x[1]:
|
||||
maxima.append(0)
|
||||
return maxima
|
||||
|
||||
|
||||
def check_last_element(x, maxima):
|
||||
if x[-1] > x[-2]:
|
||||
maxima.append(len(x) - 1)
|
||||
return maxima
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# result = find_maxima([1, 3, -2, 0, 2, 1])
|
||||
result = find_maxima([1, 2, 2, 1])
|
||||
print(result)
|
|
@ -0,0 +1,97 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from local_maxima_solution import find_maxima
|
||||
|
||||
|
||||
def test_find_maxima():
|
||||
values = [1, 3, -2, 0, 2, 1]
|
||||
expected = [1, 4]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_edges():
|
||||
values = [4, 2, 1, 0, 1, 5]
|
||||
expected = [0, 5]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_empty():
|
||||
values = []
|
||||
expected = []
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_plateau():
|
||||
values = [1, 2, 2, 1]
|
||||
expected = [1]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_not_a_plateau():
|
||||
values = [1, 2, 2, 3, 1]
|
||||
expected = [3]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
# the tests below here fail, can you get them to pass?
|
||||
|
||||
|
||||
def test_find_maxima_correct_order():
|
||||
values = [2, 1, 5, 1, 9]
|
||||
expected = [0, 2, 4]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_one_value():
|
||||
values = [1]
|
||||
expected = [0]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_long_plateau():
|
||||
values = [1, 2, 2, 2, 2, 2, 1, 8, 0]
|
||||
expected = [3, 7]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_plateau_at_end():
|
||||
values = [1, 2, 2]
|
||||
expected = [1]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_plateau_at_start():
|
||||
values = [1, 1, 0, 0]
|
||||
expected = [0]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_all_same_values():
|
||||
values = [1, 1]
|
||||
expected = [0]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_letters():
|
||||
values = ["T", "e", "s", "t", "s", "!"]
|
||||
expected = [0, 3]
|
||||
maxima = find_maxima(values)
|
||||
assert maxima == expected
|
||||
|
||||
|
||||
def test_find_maxima_new_inputs_to_make_current_function_fail():
|
||||
# should you actually be done with all tests, then you can think of other cases where the current function fails
|
||||
# and write tests for them and fix them
|
||||
assert True
|
BIN
hands_on_solutions/logistic_fun/bifurcation.png
Normal file
BIN
hands_on_solutions/logistic_fun/bifurcation.png
Normal file