Debugging

Sometimes you can’t avoid it

Pietro Berkes and Lisa Schwetlick

The agile development cycle

Run tests and debug
until all tests pass

pdb

August 2023, CC BY-SA 4.0 Debugging, v2.0

Debugging

* The best way to debug is to avoid bugs
* By writing tests, you anticipate the bugs

* Your test cases should already exclude a big portion of
the possible causes

* Core idea in debugging: you can stop the execution of
your application at the bug, look at the state of the
variables, and execute the code step by step

* Avoid littering your code with print statements

August 2023, CCBY-SA 4.0 Debugging, v2.0 3

pdb, the Python debugger

* Command-line based debugger

* pdb opens an interactive shell, in which one can interact
with the code
e examine and change value of variables
* execute code line by line
* set up breakpoints
* examine calls stack

August 2023, CCBY-SA 4.0 Debugging, v2.0 4

Hands-on example!

* Debugging from python
* Debugging from Jupyter

* Debugging from an IDE

August 2023, CC BY-SA 4.0 Debugging, v2.0

Entering the debugger

* Enter debugger at the start of a file:
python -m pdb myscript.py

* Enter at a specific point in the code (easy alternative to print):

some code here

the debugger starts here
breakpoint()

rest of the code

August 2023, CC BY-SA 4.0 Debugging, v2.0 6

Entering the debugger from Jupyter

e %pdb — preventive
* %debug — post-mortem

August 2023, CCBY-SA 4.0 Debugging, v2.0 7

Entering the debugger from VSCode

Start debugging Pause, step over, step in/out, restart, stop
File Edit Selection View Go Run Terminal Help app.js - myExpressApp - Visual Studio Code

RUN > Launch Program & e JS app.js X I 9 E

v VARIABLES createkError = require('http-error

express = require(’
path = require('path');
cookieParser = require(
logger = require('nm

indexRouter = require(’

usersRouter = require(’.
&0 > waren

\ CALL STACK app = express();
I Launch Program: www [10868] RUNNING

app.set('vi ', path.join(__dirname,

ann_<set/('y ncine' 'nug ')
DEBUG CONSOLE Filter (e

C:\I

> LOADED SCRIPTS
v BREAKPOINTS
B Caught Exceptions
B Uncaught Exceptions
¥ app.js
¥ master & ®O0A0 g Launch Program (myExpressApp) Ln10,Col 11 Spaces:2 UTF-8 LF JavaScript & [

Debug side bar

August 2023, CCBY-SA 4.0 Debugging, v2.0 8

Hands-on!

* Go to bug hunt/file datastore.py and execute it

data = b'A test! 012
datastore = FileDatastore(base path='./datastore')
datastore.write('a/mydata.bin’, data)

This should pass!
assert os.path.exists('./datastore/a/mydata.bin’)

* |t fails! But... it works when the base_path is an
absolute path :-(

August 2023, CCBY-SA 4.0 Debugging, v2.0

Hands-on!

* Fix the bugin file datastore.py, using the debugger
e Submit a PR for issue #1 in the repository

pdb cheatsheet

h (help) [command]
n (next)
¢ (continue)

s (step into)

I (list)
w (where)

p (print)
q (quit)
b (break) [lineno | function|, condition]]

cl (clear)
| (execute)
<enter>

August 2023, CC BY-SA 4.0

print help about command

execute current line of code, go to next line
continue executing the program until next
breakpoint, exception, or end of the program
execute current line of code; if a function is
called, follow execution inside the function
print code around the current line

show a trace of the function call that led to the
current line

print the value of a variable

leave the debugger

set a breakpoint at a given line number or
function, stop execution there if condition is
fulfilled

clear a breakpoint

execute a python command

repeat last command

Debugging, v2.0

Static checking and linting

One of the problems with debugging in Python is that most bugs only
appear when the code executes.

“Static checking” tools analyze the code without executing it.
* pep8: check that the style of the files is compatible with PEP8

* pyflakes: look for errors like defined but unused variables,
undefined names, etc. ~

4 pr—r

Sonf

p
L B
| G R \
M 1N
4 \ N
\ . | [N
N & i» <
: L/
()
v v

August 2023, CC BY-SA 4.0 Debugging, v2.0 11

 f1ake8: pep8 and pyflakes in a single, handy command \

e and also: yapf, black,

Hands-on!

 Run f1lake8 on one the files you edited today

August 2023, CCBY-SA 4.0 Debugging, v2.0

How to react to a bug

1. Add a test that matches the behavior you expect. It will fail and
reproduce the bug

Debug and fix the the bug
Run the tests until they all pass (go back to 2 if necessary)

* Now your bug is fixed *and* it will never occur again!

—
A =
,,, = i

August 2023, CCBY-SA 4.0 Debugging, v2.0

13

Up next:
Continuous Integration

August 2023, CC BY-SA 4.0

Debugging, v2.0

15

