
Debugging
Sometimes you can’t avoid it

Pietro Berkes and Lisa Schwetlick

The agile development cycle

August 2023, CC BY-SA 4.0 Debugging, v2.0

pytest

pdb

timeit
cProfile
line_profiler

Pick your next feature

Write tests
to check that feature works

Write simplest code
that makes tests pass

Run tests and debug
until all tests pass

Refactor and optimize
only if necessary

2

Debugging
• The best way to debug is to avoid bugs

• By writing tests, you anticipate the bugs

• Your test cases should already exclude a big portion of
the possible causes

• Core idea in debugging: you can stop the execution of
your application at the bug, look at the state of the
variables, and execute the code step by step
• Avoid littering your code with print statements

August 2023, CC BY-SA 4.0 Debugging, v2.0 3

pdb, the Python debugger

• Command-line based debugger
• pdb opens an interactive shell, in which one can interact

with the code
• examine and change value of variables
• execute code line by line
• set up breakpoints
• examine calls stack

August 2023, CC BY-SA 4.0 Debugging, v2.0 4

Hands-on example!
• Debugging from python
• Debugging from Jupyter
• Debugging from an IDE

August 2023, CC BY-SA 4.0 Debugging, v2.0 5

Entering the debugger
• Enter debugger at the start of a file:
python –m pdb myscript.py

• Enter at a specific point in the code (easy alternative to print):

August 2023, CC BY-SA 4.0 Debugging, v2.0

some code here
the debugger starts here
breakpoint()
rest of the code

6

Entering the debugger from Jupyter

• %pdb – preventive
• %debug – post-mortem

August 2023, CC BY-SA 4.0 Debugging, v2.0 7

Entering the debugger from VSCode

August 2023, CC BY-SA 4.0 Debugging, v2.0 8

Hands-on!
• Go to bug_hunt/file_datastore.py and execute it

• It fails! But… it works when the base_path is an
absolute path :-(

August 2023, CC BY-SA 4.0 Debugging, v2.0 9

data = b'A test! 012'
datastore = FileDatastore(base_path='./datastore')
datastore.write('a/mydata.bin', data)

This should pass!
assert os.path.exists('./datastore/a/mydata.bin’)

Hands-on!
• Fix the bug in file_datastore.py, using the debugger
• Submit a PR for issue #1 in the repository

August 2023, CC BY-SA 4.0 Debugging, v2.0 10

pdb cheatsheet

Static checking and linting
One of the problems with debugging in Python is that most bugs only
appear when the code executes.
“Static checking” tools analyze the code without executing it.
• pep8: check that the style of the files is compatible with PEP8
• pyflakes: look for errors like defined but unused variables,

undefined names, etc.
• flake8: pep8 and pyflakes in a single, handy command

• and also: yapf, black, …

August 2023, CC BY-SA 4.0 Debugging, v2.0 11

Hands-on!
• Run flake8 on one the files you edited today

August 2023, CC BY-SA 4.0 Debugging, v2.0 12

How to react to a bug
1. Add a test that matches the behavior you expect. It will fail and

reproduce the bug
2. Debug and fix the the bug
3. Run the tests until they all pass (go back to 2 if necessary)

• Now your bug is fixed *and* it will never occur again!

August 2023, CC BY-SA 4.0 Debugging, v2.0 13

Up next:
Continuous Integration

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 14

August 2023, CC BY-SA 4.0 Debugging, v2.0 15

