
Testing scientific code
Because you’re worth it

Lisa Schwetlick and Pamela Hathway

Introduction to testing project

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 2

Excursion: Logistic Map
• Simple, discrete model for population growth

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 3

f 𝑥 = 𝑟 ∗ 𝑥 ∗ (1 − 𝑥)

current population size, as
fraction of maximum

possible size, 0…1

growth rate, 0…4

reproduction starvation

reproduction
dominates

starvation
dominates

Excursion: Logistic Map
• Simple, discrete model for population growth

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 4

f 𝑥 = 𝑟 ∗ 𝑥 ∗ (1 − 𝑥)

current population size, as
fraction of maximum

possible size, 0…1

growth rate, 0…4

reproduction starvation

fixed
point

Excursion: Logistic Map
• Simple, discrete model for population growth

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 5

f 𝑥 = 𝑟 ∗ 𝑥 ∗ (1 − 𝑥)

current population size, as
fraction of maximum

possible size, 0…1

growth rate, 0…4

reproduction starvation

Excursion: Logistic Map
• x0 : initial population size
• Iterated function: f(x0)=x1 -> f(x1)=x2 -> f(x2)=x3

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 6

converges
to fixed

point

Excursion: Logistic Map

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 7

• Different growth rates lead to a variety of population dynamics
Convergence
to fix point

Convergence
to oscillations

Chaos

Testing patterns

June 2023, CC BY-SA 4.0 Testing scientific code, v15.0

What a good test looks like
• What does a good test look like? What should I test?
• Good:
• Short and quick to execute
• Easy to read
• Tests one thing

• Bad:
• Relies on data files
• Messes with “real-life” files, servers, databases

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 9

Basic structure of test
• A good test is divided in three parts:
• Given: Put your system in the right state for testing

• Create data, initialize parameters, define constants…

• When: Execute the feature that you are testing
• Typically, one or two lines of code

• Then: Compare outcomes with the expected ones
• Define the expected result of the test
• Set of assertions that check that the new state of your system matches your expectations

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 10

Test simple but general cases
• Start with simple, general case
• Take a realistic scenario for your code, try to reduce it to the simplest example

• Example: Tests for ‘lower’ method of strings

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 11

def test_lower():
Given
string = 'HeLlO wOrld'
expected = 'hello world'

When
output = string.lower()

Then
assert output == expected

Test special cases and boundary conditions
• Code often breaks in corner cases: empty lists, None, NaN, 0.0, lists with repeated elements,

non-existing file, …
• This often involves making design decision: handle corner case with special behavior, or raise

a meaningful exception?

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 12

def test_lower_empty_string():
Given
string = ''
expected = ''

When
output = string.lower()

Then
assert output == expected

} Other good corner cases for string.lower():
} ‘do-nothing case’: string = 'hi'
} symbols: string = '123 (!'

Common for-loop pattern for testing multiple cases
• Often these cases are collected in a single test:

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 13

def test_lower():
Given
Each test case is a tuple of (input, expected_result)
test_cases = [('HeLlO wOrld', 'hello world'),

('hi', 'hi'),
('123 ([?', '123 ([?'),
('', '')]

for string, expected in test_cases:
When
output = string.lower()
Then
assert output == expected

Hands-on!
• Take a look at the logistic map
• or, in Python

• What should we test?
• Generic cases
• Corner cases

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 14

f 𝑥 = 𝑟 ∗ 𝑥 ∗ (1 − 𝑥)

def f(x, r):
 """ Compute the logistic map for a given value of x and r. """
 return r * x * (1 - x)

Hands-on! for
• In the testing_project folder, open the file logistic.py and implement the

logistic function, f(x, r)

• In test_logistic.py we already added a reference test for these corner cases:
• x=0, r=1.1 => f(x, r)=0
• x=1, r=3.7 => f(x, r)=0

• Add a new test for these generic cases using the for-loop pattern:
• x=0.1, r=2.2 => f(x, r)=0.198
• x=0.2, r=3.4 => f(x, r)=0.544
• x=0.5, r=2 => f(x, r)=0.5

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 15

The for-loop pattern can be improved
• It is repetitive to write the for-loop pattern
• If one of the cases break, it can be complicated to figure out which one

• pytest has many helpers for simplifying common testing cases!
• One of them is the parametrize decorator, that simplifies running the

same test with multiple cases

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 16

Simple example

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 17

def test_for_loop_simple():
 cases = [1, 2, 3]
 for a in cases:
 assert a > 0

test_for_loop_simple
runs once and loops over
3 test cases

Simple example, with the parametrize decorator

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 18

@pytest.mark.parametrize('a', [1, 2, 3])
def test_parametrize_simple(a):
 assert a > 0

Name of the
variable that varies

List of values for the
variable

The test must take an
argument with the
same name

test_parametrize_simple
runs 3 times
with a=1, a=2, and a=3

Simple example, with the parametrize decorator

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 19

pytest automatically
creates one separate
test for each test case

@pytest.mark.parametrize('a', [1, 2, 3])
def test_parametrize_simple(a):
 assert a > 0

Name of the
variable that varies

List of values for the
variable

The test must take an
argument with the
same name

Example with multiple values

• This is a more typical case with several input values and the expected
result of the test

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 20

def test_for_loop_multiple():
 cases = [
 (1, 'hi', 'hi’),
 (2, 'no', 'nono’)
]
 for a, b, expected in cases:
 result = b * a
 assert result == expected

test_for_loop_multiple
runs once and loops over
2 test cases

Name of all the variables,
separated by commas in
one string

Same example, with the parametrize decorator

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 21

@pytest.mark.parametrize('a, b, expected', [(1, 'hi', 'hi'), (2, 'no', 'nono')])
def test_parametrize_multiple(a, b, expected):
 result = b * a
 assert result == expected

The test must take
arguments with the
same names as in the
string

List of tuples with the
values for each varialbe,
one for each test case

test_parametrize_multiple
runs 2 times with
1) a=1 b=‘hi’ expected=‘hi’
and
2) a=2 b=‘no’, expected=‘nono’

@pytest.mark.parametrize('a, b, expected', [(1, 'hi', 'hi'), (2, 'no', 'nono')])
def test_parametrize_multiple(a, b, expected):
 result = b * a
 assert result == expected

Same example, with the parametrize decorator

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 22

Name of all the variables,
separated by commas in
one string

List of tuples with the
values for each varialbe,
one for each test case

The test must take
arguments with the
same names as in the
string

pytest automatically
creates one separate
test for each test case

Hands-on!
• Rewrite the test with the generic cases for the logistic map using
parametrize

• Reference example for the corner cases test:

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 23

import pytest

@pytest.mark.parametrize('x, r, expected', [
 (0, 1.1, 0),
 (1, 3.7, 0),
]
)
def test_f_special_x_values(x, r, expected):
 result = f(x, r)
 assert_allclose(result, expected)

Hands-on! Simulate a population over time
1. Implement a function iterate_f that runs f for it iterations.

Write tests for the following cases:
• x=0.1, r=2.2, it=1

=> iterate_f(it, x, r)=[0.1, 0.198]
• x=0.2, r=3.4, it=4

=> iterate_f(it, x, r)=[0.2, 0.544, 0.843418, 0.449019, 0.841163]
• x=0.5, r=2, it=3

=> iterate_f(it, x, r)=[0.5, 0.5, 0.5]

2. (Bonus) Import the plot_trajectory function from the
plot_logistic module and use it to visualize the trajectories
generated by your code.
Try with values r<3, and 3<r<4 to get an intuition for how the
function behaves differently with different parameters.

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 24

Strategies for testing scientific code

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 25

Strategies for testing learning algorithms
• Learning algorithms can get stuck in local maxima, the solution for

general cases might not be known (e.g., unsupervised learning)
• Turn your validation cases into tests
• Stability tests:
• Start from final solution; verify that the algorithm stays there
• Start from solution and add a small amount of noise to the parameters; verify

that the algorithm converges back to the solution

• Parameter Recovery: Generate synthetic data from the model with
known parameters, then test that the code can learn the parameters
back

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 26

Learning algorithms fit the parameters of a model
to observed data

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0

y = ax + b +
noise

a = -1.2
b = 3

27

Generate synthetic data from the model to test the
learning algorithm by recovering the parameters

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0

a* = 0.5
b* = -1.3

1) Fix initial parameters

28

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0

a* = 0.5
b* = -1.3

1) Fix initial parameters 2) Generate synthetic data

y = a* x + b*
+ noise

29

Generate synthetic data from the model to test the
learning algorithm by recovering the parameters

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0

a* = 0.5
b* = -1.3

y = a* x + b*
+ noise

y = ax + b
+ noise

1) Fix initial parameters 2) Generate synthetic data

3) Run the algorithma = 0.5098
b = -1.287

30

Generate synthetic data from the model to test the
learning algorithm by recovering the parameters

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0

a* = 0.5
b* = -1.3

y = a* x + b*
+ noise

y = ax + b
+ noise

a = 0.5098
b = -1.287

1) Fix initial parameters 2) Generate synthetic data

3) Run the algorithm
4) Compare

31

Generate synthetic data from the model to test the
learning algorithm by recovering the parameters

Hands-on! Recover the population growth, r
• In the module logistic_fit, we implemented a function fit_r

that, given a population trajectory, finds the value of r that
generated it

• For example:

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 32

In [1]: from logistic import iterate_f
In [2]: from logistic_fit import fit_r
In [3]: xs = iterate_f(it=23, x0=0.3, r=3.421)

In [4]: fit_r(xs)
Out[4]: 3.4210000000000003

Hands-on!
• Write a test for the function fit_r using the parameters recovery method
• The test should

1. Set a initial value for x0 and r
2. Use iterate_f to generate a population trajectory
3. Pass the population trajectory to fit_r and collect the result parameters
4. Check that the fitted r is close enough to the original r

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 33

In [1]: from logistic import iterate_f
In [2]: from logistic_fit import fit_r
In [3]: xs = iterate_f(it=23, x0=0.3, r=3.421)

In [4]: fit_r(xs)
Out[4]: 3.4210000000000003

Randomness in Testing
• Using randomness in testing can be useful
• To check that the code is stable and works correctly in many different cases
• To find corner cases or numerical problems

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 34

def test_logistic_fit_randomized():
 random_state = np.random.RandomState(SEED)
 for _ in range(100):
 x0 = random_state.uniform(0.0001, 0.9999)
 r = round(random_state.uniform(0.001, 3.999), 3)

 xs = iterate_f(it=17, x0=x0, r=r)
 recovered_r = fit_r(xs)

 assert_allclose(r, recovered_r, atol=1e-3)

Random Seeds and Reproducibility
• When running tests that involve radomness and some test doesn’t

pass it is vital to be able to reproduce that test exactly!
• Computers produce pseudo-random numbers: setting a seed resets

the basis for the random number generator
• This is essential for reproducibility
• At a minimum, you should manually set the seed for each of your

random tests

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0

SEED = 42
random_state = np.random.RandomState(SEED)
random_state.rand()

35

Hands On!
a) Write a randomized test that checks that for r=1.5, for any random starting

point x0, the logistic equation converges to 1/3
• Write a for loop of 100 iterations, in each iteration create a random x0
• For each value of x0, test that after many iterations in iterate_f the value of x is

equal to 1/3

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 36

A Pytest Solution
• Non-scientific coding uses random testing more rarely, so there is no

helper tools for that in pytest
• However, in scientific coding it is quite common
• What do we want?
• For each (random) test there should be a seed
• For each run of the test, the seed should be different
• That seed should be printed with the test result
• It needs to be possible to explicitely run the test again with that seed!

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 37

Fixtures (minimal solution)
• Fixtures are functions that are run before the tests are executed

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 38

import numpy as np
import pytest

set the random seed for once here
SEED = np.random.randint(0, 2**31)

@pytest.fixture
def random_state():
 print(f'Using seed {SEED}')
 random_state = np.random.RandomState(SEED)
 return random_state

def test_something(random_state):
 random_state.rand()

If an input argument of a test
matches the name of a fixture,
then the fixture is called and the
return value assigned to the
argument.

pytest handles that automatically
as part of running the test suite

Hands On!
a) Write a randomized test that checks that fit_r can recover r for any random

value of x0 and r
b) Add a fixture at the top of your test file, that lets you print the seed to the

console.

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 39

What happens when you run pytest

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 40

Fixtures (real solution)
• conftest.py is a special pytest config file

(don’t import it!)
• conftest.py can be used to define custom

behavior or plugins. Fixtures can also be defined
here, so that they can be used by all tests.

• See the file demos/conftest_example.py in the
repo you forked. If you move it to the main folder
and rename it, the functions defined there select a
seed for each test and allow you to pass a seed on
the command line using --seed 123

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 41

Hands On!
a) Write a randomized test that checks that fit_r can recover r for any random

value of x0 and r
b) Add a fixture at the top of your test file, that lets you print the seed to the

console.
c) Add the conftest.py file the root directory of the project (hint: it is hiding in

the demos folder!). It sets a random seed before each run and makes it
possible to reproduce failures in random tests

d) conftest.py defines a new random_state fixture, modify your test
accordingly

e) Check that the console output of pytest now includes the seed!

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 42

Other commonly used helpers in pytest

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 43

Decorating “special” tests
• @xfail: Expected failure, outputs an “x” (or “X”) in the report

• @skip: Skip test, useful e.g. when the feature doesn’t exist yet

• @skipif: Skip the test if a condition is met, useful for tests that only works on a
specific platform, or for a specific version of Python

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 44

@pytest.mark.xfail
def test_something():
 ...

@pytest.mark.skip(reason=“functionality not yet
implemented”)
def test_something():
 ...

@pytest.mark.skipif(sys.version_info < (3, 10),
 reason="requires python3.10 or higher")
def test_something():
 ...

Marking tests with custom markers
• If you have lots of tests, you can categorize them with your own markers

• although for custom mark names you need to register the marks “pytest.ini”
• https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers

• Example:
• Smoke tests check for really basic features: run these frequently
• Other tests may be many or too slow to run every time and test for more edge cases

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 45

@pytest.mark.smoke
def test_something_basic():
 ...

> pytest –m smoke
> pytest –m ”smoke and not slow”

https://docs.pytest.org/en/7.1.x/example/markers.html

Writing temporary files: tmp_path
• To test functions that write to disk without leaving around the files when the test

is finished, use the tmp_path fixture
• The value of tmp_path is a pathlib.Path object
• The directory is created at the start of the test, and removed at the end

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 46

def test_create_file(tmp_path):
 d = tmp_path / "sub"
 d.mkdir()
 p = d / "hello.txt"
 content = "some random text"
 p.write_text(content)
 assert p.read_text() == content
 assert len(list(tmp_path.iterdir())) == 1

All you need to do is
add an argument
with this exact name

Final exercise

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 47

Excursion: Logistic map

• Between r=3 and r=4 the logistic map has a range of behaviors
• Periodic vs. chaotic

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 48

Excursion: Logistic map

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 49

Excursion: Logistic map and chaos

• Sensitive Dependence on
Initial Conditions (SDIC)
• Even starting points that are

very close quickly diverge to
completely different
itineraries
• This is called the

“Butterfly effect”

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 50

Hands on!
Some r values for 3 < r < 4 have some interesting properties: a chaotic
trajectory neither diverges nor converges.

a) Use the plot_bifurcation function from the plot_logfun module using your
implementation of f and iterate to look at the bifurcation diagram. The function
generates an output image, bifurcation_diagram.png

b) Write a test that checks for chaotic behavior when r=3.8. Run the logistic map for
100’000 iterations and verify the conditions for chaotic behavior:

1) The function is deterministic: this does not need to be tested in this case
2) Orbits must be bounded: check that all values are between 0 and 1
3) Orbits must be aperiodic: check that the last 1000 values are all different
4) Sensitive dependence on initial conditions: this is the bonus exercise (in readme)

The test should check conditions 2) and 3)!

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 51

Testing is good for your self-esteem

• Immediately: Always be
confident that your results are
correct, whether your
approach works of not
• In the future: save your future

self some trouble!
• If you are left thinking “it’s

cool but I cannot test my code
because XYZ”, talk to us
during the week and we’ll
show you how to do it ;-)

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0

You, in 2024

52

You, in 2023

DebuggingAugust 2023, CC BY-SA 4.0 53

Up next:

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 54

