|
L

Testing scientific coc

Because ygu’; rth

please fork and clone the

repository

git.aspp.school/ASPP/2024-
ing

August 2023, CCBY-SA 4.0

&4 , =1
A\
"
W A
/v‘“ S

aw- You, as the Master of Research

You start a new project, let’s say with a new
simulation method or a new dataset and have a few
ideas for possible analyses.

You implement the analyses as prototypes; once
each prototype is finished, you can confidently
decide whether it is is a dead end, or worth pursuing.

Once you find an idea on which it is worth spending
energy, you take the prototype and easily re-
organize and optimize it so that it scales up to the
full size of your problem.

As expected, the scaled-up experiment delivers good
results, and your next paper is under way.

How to reach enlightenment

 How do we get to the blessed state of
confidence and efficiency?

* Being a Python expert is not sufficient,
good programming practices make a big
difference

* We can learn a lot from the development
methods developed for commercial and
open source software

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

Outline

* The agile programming cycle

* Testing scientific code basics

* Testing patterns for scientific code
* Debugging

* Continuous Integration

Warm-up project

* Go to the directory called hands_on/local _maxima

* In the file called 1local maxima.py, write a function find_maxima that
finds the indices of local maxima in a list of numbers

For example,

find maxima([1, 3, -2, 0, 2, 1])
should return

[1, 4]

o

Indices

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

Warm-up project

* Write a function find _maxima that finds the indices of local maxima
in a list of numbers

* Check your solution with these inputs:

* Input: [1, 3,-2,0, 2, 1] Expected result: [1, 4]

* Input: [4,2,1,3,1,5] Expected result: [0, 3, 5]

* Input: [] Expected result: []

* Input: [1, 2, 2, 1] Expected result: [1] (or [2], or [1, 2])
* Input: [1, 2, 2, 3, 1] Expected result: [3]

The agile development cycle

/;> Pick your next feature

~

Write tests
to check that feature works

>

Write simplest code
that makes tests pass

>

Run tests and debug
until all tests pass

a4
tl Refactor and optimize

only if necessary

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0 8

Python tools for agile development

/;> Pick your next feature

~

Write tests
to check that feature works

>

Write simplest code
that makes tests pass

>

Run tests and debug
until all tests pass

a4
tl Refactor and optimize

only if necessary

pytest

pdb

timeit
cProfile
line profiler

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0 9

August 2023, CCBY-SA 4.0

Why write tests at all?

* Confidence while re-using code:
* Write the code once and use it confidently everywhere else:
avoid the negative result effect!
* Confidence while editing code:

 When you have tests, you can change any part of your code and you will be
confident that you have not changed the result

* change any line in the code
» Refactor to improve readability/speed/memory usage

* Confidence in correctness:
* Correctness is main requirement for scientific code
* You must have a strategy to ensure correctness

Effect of software bugs in science

>

O

C

Q

>

o

O

S

G

I [bug severity I

oops, wrong need to send end of career
labels! errata corrige

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

12

The unfortunate story of Geoffrey Chang

Science, Dec 2006: 5 high-profile retractions (3x Science, PNAS, J. Mol. Biol.) because “an

in-house data reduction program introduced a change in sign for anomalous differences’

SCIENTIFIC PUBLISHING

A Scientist’s Nightmare: Software
Problem Leads to Five Retractions

Until recently, Geoflrey Chang § career wason
a trajectory most young scientists only dream
about. In 1999, at the age of 28, the protein
crystallographer landed a faculty position at
the prestigious Scripps Research Institute in
San Diego, California. The next year, m a cer-

August 2023, CCBY-SA 4.0

2001 Science paper, which descnbed the struc-
ture of a protein calked MsbA, solated from the
bacterium Escherichia coli. MsbA belongs toa
huge and ancient family of molecules that use
energy from adenosine triphosphate w trans-
port molecules across cell membranes. These

Testing scientific code, v16.0

)

LETTERS

edited by Etta Kavanagh

Retraction

WE WISH TO RETRACT OUR RESEARCH ARTICLE “STRUCTURE OF
MsbA from E. coli: A homolog of the multidrug resistance ATP bind-

ing cassette (ABC) transporters™ and both of our Reports “Structure of

the ABC transporter MsbA in complex with ADP-vanadate and
lipopolysaccharide™ and “*X-ray structure of the EmrE multidrug trans-
porter in complex with a substrate™ (/-3).

The recently reported structure of Sav1866 (4) indicated that our
MsbA structures (/, 2, 5) were incorrect in both the hand of the struc-
ture and the topology. Thus, our biological interpretations based on
these inverted models for MsbA are invalid.

Anin-house data reduction program introduced a change in sign for
anomalous differences. This program, which was not part of a conven-
tional data processing package, converted the anomalous pairs (I+ and
[-) to (F- and F+), thereby introducing a sign change. As the diffrac-
tion data collected for each set of MsbA crystals and for the EmrE

in(/-3, 3, 6) had the wrong hand.

13

2024 CrowdStrike incident

A software update by CrowdStrike resulted in 8.5 million Microsoft Windows-based
systems crashing, unable to restart (across hospitals, airports, companies, ...)
—> |argest outage in the history of information technology

€he New Hork Eimes

See more from our live coverage

They changed one array from 20 entries to 21 entries, which

caused a fatal error.
Chaos and Confusion: Tech Outage

_ , Causes Disruptions Worldwide
Th ey d I d n Ot te St th IS C h an ge p ro p e rly . Airlines, hospitals and peoplée’s computers were affected after

- their unit tests only tested the most basic case (happy path) S;‘c’ljl’t‘i_st“'ke’“yberse°““'ty°°mpa“y’Se“““taﬂaw"ds"“ware
- their manual test only tested valid data

% Share full article ~ A CJes1

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

B s Do

s Sl

-

0
| Lu,..

e

)

L
4 :
g
i
T
.

i
- &
4 B
y X
& {
A | h)
| .
¥ I8
4 5 |
, [

/l

A test is just another function

* Imagine we wrote this new function, and we wanted to test it

def times_3(x):
"""Multiply x by 3.

Parameters
x : The item to multiply by 3.

return X * 3

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0

Testing frameworks

* The collection of tests written to test a package is called a “test suite”

* Execution of a test suite is automated: external software runs the
tests and provides reports and statistics

* Main testing frameworks for python:

* unittest: in the standard library
* pytest: what is most commonly used

test session starts

platform darwin —— Python 3.11.3, pytest-7.3.1, pluggy-1.0.0
collected 2 items

test_first.py::test_times_3_integer PASSED [50%]
test_first.py::test_times_3_string PASSED [100%]

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 17

Hands-on!

* Goto hands_on/first

Discover all tests in all subdirectories
pytest -v

Execute all tests in one module
pytest -v test first.py

Execute one single test
pytest -v test first.py::test times 3 string

Look into test_first.py. What do you see?

August 2023, CCBY-SA 4.0

Test suites in Python with pytest
* Writing tests with pytest is simple:

* Tests are collected in files called test abc.py , which usually contains tests
for the functions defined in a corresponding module abc

* Each test is a function called test_jkl feature, and usually it tests feature
feature of a function called jkl

* Each test checks that the tested function behaves correctly using “assertions”.
An exception is raised if it does not work as expected.

e Each test tests one feature in your code

Assertions

* assert statements check that some condition is met, and raise an exception
otherwise

* Check that statement is true/false:

assert 'Hi'.islower() => fail
assert not 'Hi'.islower() => pass

* Check that two objects are equal:

assert 2 + 1 == => pass
assert [2] + [1] [2, 1] => pass

assert 'a' + 'b' "ab' => fail

e assert can be used to compare all sorts of objects, and pytest will take care
of producing an appropriate error message

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 20

Hands-on! Possibly your first test

* Inside test first.py, testthat times 3([1]) returns what you
would expect

* Try to change the expected result in the test to [2] (or anything you
want) and watch the test break. Look at the error message and make
sure you understand what’s going on

August 2023, CCBY-SA 4.0

Hands-on!

* Create a new file, test plus.py:
write a test that asserts that 1+2 is 3

* What do you expect to happen?
* Execute the test

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

Hands-on!

* Create a new file, test plus.py:
write a test that asserts that 1+2 is 3

* What do you expect to happen?
* Execute the test

* Then write a new test and assertthat 1.1 + 2.2 is 3.3
* What do you expect to happen?
e Execute the tests

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

Floating point equality

* Real numbers are represented approximately as “floating point”
numbers. When developing numerical code, we have to allow for
approximation errors.

* Check that two numbers are approximately equal:

from math import isclose

def test floating point _math():
assert isclose(1.1 + 2.2, 3.3) => pass

 abs_tol controls the absolute tolerance:

assert isclose(1.121, 1.2, abs tol=0.1) => pass
assert isclose(1.121, 1.2, abs tol=0.01) => fail

* rel tol controls the relative tolerance:

assert isclose(120.1, 121.4, rel tol=0.1) pass
assert isclose(120.4, 121.4, rel tol=0.01) fail

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

Hands-on!

* One more equality test: check that the sum of these two NumPy
arrays:
X = np.array([1, 1])
y = np.array([2, 2])
is equal to
z = np.array([3, 3])

August 2023, CCBY-SA 4.0

Testing with numpy arrays

def test numpy equality():
X np.array([1, 1])
y np.array([2, 2])
z = np.array([3, 3])
assert X + y == 2z

test_numpy_equality

def test_numpy_equality():
X = numpy.array([1, 1])
y = numpy.array([2, 2])
z = numpy.array([3, 3])
> assertx+y==1z
E ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

code.py:47: ValueError

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

Testing with numpy arrays

* The module np.testing defines helper functions:

from numpy.testing import assert _equal, assert _allclose
assert _equal(x, y)
assert _allclose(x, y, rtol=1le-07, atol=0)

* If you need to check more complex conditions:

. np.all(x): returns True if all elements of x are true
np.any(x): returns True is any of the elements of x is true

e combine with logical and, logical or, logical not:
test that all elements of x are between © and 1
assert all(logical and(x > 0.0, x < 1.9))

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

Watch out for nans!

* In general, nan is not equal to itself (IEEE standard)

In [2]: np.nan == np.nan
Out[2]: False

e assert equal and assert allclose consider nans equal by
default

def test_allclose with_nan():

X = np.array([1.1, np.nan])
y = np.array([2.2, np.nan])
z = np.array([3.3, np.nanl)

assert_allclose(x + vy, z)

test_numpy_equality.py::test_allclose_with_nan PASSED

August 2023, CC BY-SA 4.0 Testing scientific code, v16.0 28

Write a working version of find _maxima, with testing

* Read carefully the description of Issue #1 on GitHub

e Submit a Pull Request for Issue #1
* Fork the repository (if you haven’t already)
e Create a new branch on the fork called e.g. fix-1
Solve the issue with one or more commits
Push the branch to your GitHub fork

On GitHub, go to “Pull Requests” and open a pull request against branch
main of the official ASPP repository

In the PR description write “Fixes #1” somewhere, this is going to create an
automatic link to the issue, and close the issue if the PR is merged

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

,...,:@

-

o O = &\

——— e BB RB R hm D

August 2023, CCBY-SA 4.0

Testing scientific code, v16.0

31

Testing error control

* Check that an exception is raised:

from py.test import raises
def test raises|():
with raises (SomeException):
do something ()
do something else ()

* For example:

with raises (ValueError) :
int ("XYZzZ")

passes, because

int ("XYZz")
ValueError: invalid literal for int ()

August 2023, CCBY-SA 4.0 Testing scientific code, v16.0

with base 10:

'XYz'

35

Testing error control

* Use the most specific exception class, or the test may pass because of
collateral damage:

Test that file "None" cannot be opened.

with raises (IOError) : => fail
open (None, 'r')

as expected, but

=> pass

with raises (Exception):
open (None, 'r’)

