
Testing scientific code
Because you’re worth it

Lisa Schwetlick and Pamela Hathway

please fork and clone the
repository
git.aspp.school/ASPP/2024-
heraklion-testing-debugging

Testing scientific code, v16.0

You, as the Master of Research
You start a new project, let’s say with a new
simulation method or a new dataset and have a few
ideas for possible analyses.
You implement the analyses as prototypes; once
each prototype is finished, you can confidently
decide whether it is is a dead end, or worth pursuing.
Once you find an idea on which it is worth spending
energy, you take the prototype and easily re-
organize and optimize it so that it scales up to the
full size of your problem.
As expected, the scaled-up experiment delivers good
results, and your next paper is under way.

August 2023, CC BY-SA 4.0 2

Testing scientific code, v16.0

How to reach enlightenment
• How do we get to the blessed state of

confidence and efficiency?
• Being a Python expert is not sufficient,

good programming practices make a big
difference
• We can learn a lot from the development

methods developed for commercial and
open source software

August 2023, CC BY-SA 4.0 3

Testing scientific code, v16.0

Outline
• The agile programming cycle
• Testing scientific code basics
• Testing patterns for scientific code
• Debugging
• Continuous Integration

August 2023, CC BY-SA 4.0 4

Testing scientific code, v16.0

Warm-up project
• Go to the directory called hands_on/local_maxima

• In the file called local_maxima.py, write a function find_maxima that
finds the indices of local maxima in a list of numbers

August 2023, CC BY-SA 4.0 5

For example,
find_maxima([1, 3, -2, 0, 2, 1])
should return
[1, 4]

Testing scientific code, v16.0

Warm-up project
• Write a function find_maxima that finds the indices of local maxima

in a list of numbers

• Check your solution with these inputs:
• Input: [1, 3, -2, 0, 2, 1] Expected result: [1, 4]
• Input: [4, 2, 1, 3, 1, 5] Expected result: [0, 3, 5]
• Input: [] Expected result: []
• Input: [1, 2, 2, 1] Expected result: [1] (or [2], or [1, 2])
• Input: [1, 2, 2, 3, 1] Expected result: [3]

August 2023, CC BY-SA 4.0 6

Testing scientific code, v16.0August 2023, CC BY-SA 4.0 7

The agile programming cycle

Testing scientific code, v16.0

The agile development cycle

August 2023, CC BY-SA 4.0 8

Pick your next feature

Write tests
to check that feature works

Write simplest code
that makes tests pass

Run tests and debug
until all tests pass

Refactor and optimize
only if necessary

Testing scientific code, v16.0

Python tools for agile development

August 2023, CC BY-SA 4.0 9

pytest

pdb

timeit
cProfile
line_profiler

Pick your next feature

Write tests
to check that feature works

Write simplest code
that makes tests pass

Run tests and debug
until all tests pass

Refactor and optimize
only if necessary

Testing scientific code, v16.0August 2023, CC BY-SA 4.0 10

Why test scientific code?

Testing scientific code, v16.0

Why write tests at all?
• Confidence while re-using code:
• Write the code once and use it confidently everywhere else:

avoid the negative result effect!

• Confidence while editing code:
• When you have tests, you can change any part of your code and you will be

confident that you have not changed the result
• change any line in the code
• Refactor to improve readability/speed/memory usage

• Confidence in correctness:
• Correctness is main requirement for scientific code
• You must have a strategy to ensure correctness

August 2023, CC BY-SA 4.0 11

Testing scientific code, v16.0

Effect of software bugs in science

August 2023, CC BY-SA 4.0 12

fr
eq

ue
nc

y

bug severity

oops, wrong
labels!

need to send
errata corrige

end of career

Testing scientific code, v16.0

The unfortunate story of Geoffrey Chang

August 2023, CC BY-SA 4.0 13

Science, Dec 2006: 5 high-profile retractions (3x Science, PNAS, J. Mol. Biol.) because ”an
in-house data reduction program introduced a change in sign for anomalous differences”

Testing scientific code, v16.0

2024 CrowdStrike incident

August 2023, CC BY-SA 4.0 14

A software update by CrowdStrike resulted in 8.5 million Microsoft Windows-based
systems crashing, unable to restart (across hospitals, airports, companies, …)
—> largest outage in the history of information technology

They changed one array from 20 entries to 21 entries, which
caused a fatal error.

They did not test this change properly:
- their unit tests only tested the most basic case (happy path)
- their manual test only tested valid data

Testing scientific code, v16.0

Testing basics

August 2023, CC BY-SA 4.0 15

Testing scientific code, v16.0

A test is just another function
• Imagine we wrote this new function, and we wanted to test it

August 2023, CC BY-SA 4.0 16

def times_3(x):
"""Multiply x by 3.

Parameters

x : The item to multiply by 3.
"""
return x * 3

Testing scientific code, v16.0

Testing frameworks
• The collection of tests written to test a package is called a “test suite”
• Execution of a test suite is automated: external software runs the

tests and provides reports and statistics
• Main testing frameworks for python:
• unittest: in the standard library
• pytest: what is most commonly used

August 2023, CC BY-SA 4.0 17

=== test session starts ==
platform darwin -- Python 3.11.3, pytest-7.3.1, pluggy-1.0.0
collected 2 items

test_first.py::test_times_3_integer PASSED [50%]
test_first.py::test_times_3_string PASSED [100%]

== 2 passed in 0.00s ===

Testing scientific code, v16.0

Hands-on!
• Go to hands_on/first
1. Discover all tests in all subdirectories

pytest –v
2. Execute all tests in one module

pytest -v test_first.py
3. Execute one single test

pytest -v test_first.py::test_times_3_string
4. Look into test_first.py. What do you see?

August 2023, CC BY-SA 4.0 18

Testing scientific code, v16.0

Test suites in Python with pytest
• Writing tests with pytest is simple:

• Tests are collected in files called test_abc.py , which usually contains tests
for the functions defined in a corresponding module abc

• Each test is a function called test_jkl_feature, and usually it tests feature
feature of a function called jkl

• Each test checks that the tested function behaves correctly using “assertions”.
An exception is raised if it does not work as expected.

• Each test tests one feature in your code

August 2023, CC BY-SA 4.0 19

Testing scientific code, v16.0

Assertions
• assert statements check that some condition is met, and raise an exception

otherwise

• Check that statement is true/false:
assert 'Hi'.islower() => fail
assert not 'Hi'.islower() => pass

• Check that two objects are equal:
assert 2 + 1 == 3 => pass
assert [2] + [1] == [2, 1] => pass
assert 'a' + 'b' != 'ab' => fail

• assert can be used to compare all sorts of objects, and pytest will take care
of producing an appropriate error message

August 2023, CC BY-SA 4.0 20

Testing scientific code, v16.0

Hands-on! Possibly your first test
• Inside test_first.py, test that times_3([1]) returns what you

would expect

• Try to change the expected result in the test to [2] (or anything you
want) and watch the test break. Look at the error message and make
sure you understand what’s going on

August 2023, CC BY-SA 4.0 21

Testing scientific code, v16.0

Hands-on!
• Create a new file, test_plus.py:

write a test that asserts that 1+2 is 3
• What do you expect to happen?
• Execute the test

August 2023, CC BY-SA 4.0 22

Testing scientific code, v16.0

Hands-on!
• Create a new file, test_plus.py:

write a test that asserts that 1+2 is 3
• What do you expect to happen?
• Execute the test

• Then write a new test and assert that 1.1 + 2.2 is 3.3
• What do you expect to happen?
• Execute the tests

August 2023, CC BY-SA 4.0 23

Testing scientific code, v16.0

Floating point equality
• Real numbers are represented approximately as “floating point”

numbers. When developing numerical code, we have to allow for
approximation errors.
• Check that two numbers are approximately equal:
from math import isclose
def test_floating_point_math():

assert isclose(1.1 + 2.2, 3.3) => pass

• abs_tol controls the absolute tolerance:
assert isclose(1.121, 1.2, abs_tol=0.1) => pass
assert isclose(1.121, 1.2, abs_tol=0.01) => fail

• rel_tol controls the relative tolerance:
assert isclose(120.1, 121.4, rel_tol=0.1) => pass
assert isclose(120.4, 121.4, rel_tol=0.01) => fail

August 2023, CC BY-SA 4.0 24

Testing scientific code, v16.0

Hands-on!
• One more equality test: check that the sum of these two NumPy

arrays:
x = np.array([1, 1])
y = np.array([2, 2])
is equal to
z = np.array([3, 3])

August 2023, CC BY-SA 4.0 25

Testing scientific code, v16.0

Testing with numpy arrays

August 2023, CC BY-SA 4.0 26

def test_numpy_equality():
x = np.array([1, 1])
y = np.array([2, 2])
z = np.array([3, 3])
assert x + y == z

__________________________________ test_numpy_equality __________________________________

def test_numpy_equality():
x = numpy.array([1, 1])
y = numpy.array([2, 2])
z = numpy.array([3, 3])

> assert x + y == z
E ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

code.py:47: ValueError

Testing scientific code, v16.0

Testing with numpy arrays
• The module np.testing defines helper functions:
from numpy.testing import assert_equal, assert_allclose
assert_equal(x, y)
assert_allclose(x, y, rtol=1e-07, atol=0)

• If you need to check more complex conditions:
• np.all(x): returns True if all elements of x are true

np.any(x): returns True is any of the elements of x is true

• combine with logical_and, logical_or, logical_not:
test that all elements of x are between 0 and 1
assert all(logical_and(x > 0.0, x < 1.0))

August 2023, CC BY-SA 4.0 27

Testing scientific code, v16.0

Watch out for nans!
• In general, nan is not equal to itself (IEEE standard)

• assert_equal and assert_allclose consider nans equal by
default

August 2023, CC BY-SA 4.0 28

In [2]: np.nan == np.nan
Out[2]: False

def test_allclose_with_nan():
x = np.array([1.1, np.nan])
y = np.array([2.2, np.nan])
z = np.array([3.3, np.nan])
assert_allclose(x + y, z)

test_numpy_equality.py::test_allclose_with_nan PASSED

Testing scientific code, v16.0

Write a working version of find_maxima, with testing

• Read carefully the description of Issue #1 on GitHub
• Submit a Pull Request for Issue #1
• Fork the repository (if you haven’t already)
• Create a new branch on the fork called e.g. fix-1
• Solve the issue with one or more commits
• Push the branch to your GitHub fork
• On GitHub, go to “Pull Requests” and open a pull request against branch
main of the official ASPP repository
• In the PR description write “Fixes #1” somewhere, this is going to create an

automatic link to the issue, and close the issue if the PR is merged

August 2023, CC BY-SA 4.0 29

Testing scientific code, v16.0

Up next:
Testing patterns

August 2023, CC BY-SA 4.0 30

Testing scientific code, v16.0August 2023, CC BY-SA 4.0 31

Testing scientific code, v16.0

Testing error control
• Check that an exception is raised:

from py.test import raises
def test_raises():

with raises(SomeException):
do_something()
do_something_else()

• For example:

with raises(ValueError):
int('XYZ’)

passes, because

int('XYZ’)
ValueError: invalid literal for int() with base 10: 'XYZ'

August 2023, CC BY-SA 4.0 35

Testing scientific code, v16.0

Testing error control
• Use the most specific exception class, or the test may pass because of

collateral damage:

Test that file "None" cannot be opened.

with raises(IOError):
open(None, 'r')

as expected, but

with raises(Exception):
open(None, 'r’)

August 2023, CC BY-SA 4.0 36

=> fail

=> pass

