first commit
This commit is contained in:
commit
01e7a23ae2
6 changed files with 598 additions and 0 deletions
169
puzzle.ipynb
Normal file
169
puzzle.ipynb
Normal file
|
@ -0,0 +1,169 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T09:40:28.904Z",
|
||||
"iopub.status.busy": "2024-03-04T09:40:28.896Z",
|
||||
"iopub.status.idle": "2024-03-04T09:40:28.978Z",
|
||||
"shell.execute_reply": "2024-03-04T09:40:28.967Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:02:39.062Z",
|
||||
"iopub.status.busy": "2024-03-04T10:02:39.057Z",
|
||||
"iopub.status.idle": "2024-03-04T10:02:39.068Z",
|
||||
"shell.execute_reply": "2024-03-04T10:02:39.071Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create a collection of time series\n",
|
||||
"# in real life, this data comes from an experiment/simulation\n",
|
||||
"n_series = 128\n",
|
||||
"len_one_series = 2**20 # ➔ 2^20 = 1,048,576 items (8 B x 2^20 = 8,388,608 B = 8 M)\n",
|
||||
"time_series = np.zeros((n_series, len_one_series), dtype='float64')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:02:41.027Z",
|
||||
"iopub.status.busy": "2024-03-04T10:02:41.020Z",
|
||||
"iopub.status.idle": "2024-03-04T10:02:41.036Z",
|
||||
"shell.execute_reply": "2024-03-04T10:02:41.040Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# how much memory does one time series need?\n",
|
||||
"ts_size = time_series[0].nbytes/2**20 # -> 2^20 is 1 M\n",
|
||||
"total_size = time_series.nbytes/2**20\n",
|
||||
"print(f'Size of one time series: {int(ts_size)} M')\n",
|
||||
"print(f'Size of collection: {int(total_size)} M')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:06:08.461Z",
|
||||
"iopub.status.busy": "2024-03-04T10:06:08.459Z",
|
||||
"iopub.status.idle": "2024-03-04T10:06:08.466Z",
|
||||
"shell.execute_reply": "2024-03-04T10:06:08.468Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# let's load the collection in one big array\n",
|
||||
"def load_data_row(x, time_series):\n",
|
||||
" \"\"\"Store one time series per raw\"\"\"\n",
|
||||
" for row, ts in enumerate(time_series):\n",
|
||||
" x[row,:] = ts\n",
|
||||
" return x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:06:10.280Z",
|
||||
"iopub.status.busy": "2024-03-04T10:06:10.277Z",
|
||||
"iopub.status.idle": "2024-03-04T10:06:10.284Z",
|
||||
"shell.execute_reply": "2024-03-04T10:06:10.288Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# let's load the collection in one big array\n",
|
||||
"def load_data_column(x, time_series):\n",
|
||||
" \"\"\"Store one time series per column\"\"\"\n",
|
||||
" for column, ts in enumerate(time_series):\n",
|
||||
" x[:,column] = ts\n",
|
||||
" return x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:06:14.959Z",
|
||||
"iopub.status.busy": "2024-03-04T10:06:14.956Z",
|
||||
"iopub.status.idle": "2024-03-04T10:06:17.437Z",
|
||||
"shell.execute_reply": "2024-03-04T10:06:17.443Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x = np.zeros((n_series, len_one_series), dtype='float64')\n",
|
||||
"%timeit load_data_row(x, time_series)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:06:20.056Z",
|
||||
"iopub.status.busy": "2024-03-04T10:06:20.053Z",
|
||||
"iopub.status.idle": "2024-03-04T10:06:21.695Z",
|
||||
"shell.execute_reply": "2024-03-04T10:06:21.700Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x = np.zeros((len_one_series, n_series), dtype='float64')\n",
|
||||
"%timeit load_data_column(x, time_series)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# on my machine: 31 ms vs 1240 ms ≈ 40x slowdown!!!"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.6"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue