Simple modifications to power function #1
1 changed files with 81 additions and 50 deletions
131
exercise.ipynb
131
exercise.ipynb
|
@ -2,15 +2,8 @@
|
|||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T09:40:28.904Z",
|
||||
"iopub.status.busy": "2024-03-04T09:40:28.896Z",
|
||||
"iopub.status.idle": "2024-03-04T09:40:28.978Z",
|
||||
"shell.execute_reply": "2024-03-04T09:40:28.967Z"
|
||||
}
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np"
|
||||
|
@ -18,15 +11,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:02:39.062Z",
|
||||
"iopub.status.busy": "2024-03-04T10:02:39.057Z",
|
||||
"iopub.status.idle": "2024-03-04T10:02:39.068Z",
|
||||
"shell.execute_reply": "2024-03-04T10:02:39.071Z"
|
||||
}
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"n_series = 32\n",
|
||||
|
@ -37,17 +23,20 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:02:41.027Z",
|
||||
"iopub.status.busy": "2024-03-04T10:02:41.020Z",
|
||||
"iopub.status.idle": "2024-03-04T10:02:41.036Z",
|
||||
"shell.execute_reply": "2024-03-04T10:02:41.040Z"
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Size of one time series: 40 M\n",
|
||||
"Size of collection: 1280 M\n",
|
||||
"Gap size: 128 K\n",
|
||||
"Gapped series size: 2 K\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(f'Size of one time series: {int(time_series[0].nbytes/2**20)} M')\n",
|
||||
"print(f'Size of collection: {int(time_series.nbytes/2**20)} M')\n",
|
||||
|
@ -80,15 +69,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:06:08.461Z",
|
||||
"iopub.status.busy": "2024-03-04T10:06:08.459Z",
|
||||
"iopub.status.idle": "2024-03-04T10:06:08.466Z",
|
||||
"shell.execute_reply": "2024-03-04T10:06:08.468Z"
|
||||
}
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# compute an approximation of a power series for a collection of gapped timeseries\n",
|
||||
|
@ -100,6 +82,32 @@
|
|||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"P = np.zeros_like(time_series)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"5.53 s ± 1.3 s per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%timeit power(time_series, P, gap)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
@ -132,7 +140,20 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def power_improved(time_series, P, gap):\n",
|
||||
" for pwr in range(30):\n",
|
||||
" for row_idx, row_values in enumerate(time_series):\n",
|
||||
" P[row_idx] += (row_values[::gap]**pwr).sum()\n",
|
||||
" return P"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -163,21 +184,31 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2024-03-04T10:06:20.056Z",
|
||||
"iopub.status.busy": "2024-03-04T10:06:20.053Z",
|
||||
"iopub.status.idle": "2024-03-04T10:06:21.695Z",
|
||||
"shell.execute_reply": "2024-03-04T10:06:21.700Z"
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"17.8 ms ± 1.56 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
||||
]
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
],
|
||||
"source": [
|
||||
"P = np.zeros(n_series, dtype='float64')\n",
|
||||
"%timeit power_improved(time_series, P, gap)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Learnings:\n",
|
||||
"- just changing the order of the loops: 5.5 s -> 24.2 ms\n",
|
||||
"- also enumerating and accessing the rows: 17.8 ms"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
@ -202,12 +233,12 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.5"
|
||||
"version": "3.13.6"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue