{ "cells": [ { "cell_type": "code", "source": [ "import os\n", "import pprint\n", "import numpy as np\n", "# you may need to pip-install this\n", "import threadpoolctl as th" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "7480c6b9" }, { "cell_type": "code", "source": [ "N = 10000\n", "x = np.zeros((N, N), dtype=\"float64\")" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "653a14c9" }, { "cell_type": "code", "source": [ "# open a terminal and look at htop while running this,\n", "# then repeat by changing N ➔ notice how the workload is distributed and\n", "# how the frequencies of the CPUs are adjusted!\n", "y = x @ x" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "3f3e7872" }, { "cell_type": "code", "source": [ "# now control the number of OpenMP/BLAS threads with threadpoolctl\n", "# monitor with htop -➔ see how the one process jumps around CPUs" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "eeec6203" }, { "cell_type": "code", "source": [ "with th.threadpool_limits(limits=1, user_api='blas'):\n", " y = x @ x" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "fbe3e515" }, { "cell_type": "code", "source": [ "# OpenMP/BLAS infos\n", "pprint.pprint(th.threadpool_info())" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "6b1ef107" }, { "cell_type": "code", "source": [ "# How to limit the jumping around?\n", "os.sched_getaffinity(0) # 0 is the \"calling\" process, i.e. this very process" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "9616d412" }, { "cell_type": "code", "source": [ "# let's make our process stick to CPU0!\n", "with th.threadpool_limits(limits=1, user_api='blas'):\n", " os.sched_setaffinity(0, {0})\n", " y = x @ x" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "a85806f8" }, { "cell_type": "code", "source": [ "# let's see what happens if we move it to a E-core\n", "with th.threadpool_limits(limits=1, user_api='blas'):\n", " os.sched_setaffinity(0, {10})\n", " y = x @ x" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "3efc9fa1" }, { "cell_type": "code", "source": [ "# and now let's try to force it to use the two physical P-cores, and go around HyperThreading ;-)\n", "# note that we are changing to limits=2!\n", "with th.threadpool_limits(limits=2, user_api='blas'):\n", " os.sched_setaffinity(0, {0,2})\n", " y = x @ x" ], "outputs": [], "execution_count": null, "metadata": {}, "id": "de5c8f61" } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" }, "nteract": { "version": "0.28.0" } }, "nbformat": 4, "nbformat_minor": 5 }