diff --git a/exercises/tabular_split_apply_combine/split_apply_combine.ipynb b/exercises/tabular_split_apply_combine/split_apply_combine.ipynb index 190b37c..47f3d1c 100644 --- a/exercises/tabular_split_apply_combine/split_apply_combine.ipynb +++ b/exercises/tabular_split_apply_combine/split_apply_combine.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "id": "8f9bc8b1", "metadata": {}, "outputs": [], @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "id": "d2dfebd3", "metadata": {}, "outputs": [], @@ -41,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "id": "09554c84", "metadata": {}, "outputs": [ @@ -51,7 +51,7 @@ "(6245, 18)" ] }, - "execution_count": 3, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "id": "df95a10b", "metadata": {}, "outputs": [ @@ -233,7 +233,7 @@ "4 No Yes No No 9 2.746064 No Control Madrid " ] }, - "execution_count": 4, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -257,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "id": "99b21627-1b48-44ee-bda2-312b0718bd59", "metadata": {}, "outputs": [], @@ -275,12 +275,28 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 18, "id": "00bb9eb1", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "group\n", + "Control 96\n", + "MedDiet + Nuts 69\n", + "MedDiet + VOO 83\n", + "Name: event, dtype: int64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# your code here:\n" + "# your code here:\n", + "df.groupby('group')['event'].sum()" ] }, { @@ -293,12 +309,28 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 17, "id": "db946d0f-8204-43a3-853c-41981a9811f4", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "group\n", + "Control 2016\n", + "MedDiet + Nuts 2077\n", + "MedDiet + VOO 2152\n", + "Name: event, dtype: int64" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# your code here:\n" + "# your code here:\n", + "df.groupby('group').count()['event']" ] }, { @@ -313,12 +345,28 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 19, "id": "13ad4130-2094-4e7a-a416-f0fd6e810413", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "group\n", + "Control 4.761905\n", + "MedDiet + Nuts 3.322099\n", + "MedDiet + VOO 3.856877\n", + "Name: event, dtype: float64" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# your code here:\n" + "# your code here:\n", + "df.groupby('group')['event'].mean()*100" ] }, { @@ -352,12 +400,81 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 29, "id": "5ab4e70e-6261-4a26-8ad9-14eae15be09c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
smokeCurrentFormerNever
group
Control4.928.043.47
MedDiet + Nuts5.153.712.73
MedDiet + VOO6.905.462.55
\n", + "
" + ], + "text/plain": [ + "smoke Current Former Never\n", + "group \n", + "Control 4.92 8.04 3.47\n", + "MedDiet + Nuts 5.15 3.71 2.73\n", + "MedDiet + VOO 6.90 5.46 2.55" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# your code here\n" + "# your code here\n", + "(df.pivot_table(index='group', columns='smoke', values='event')*100).round(2)" ] }, { @@ -392,7 +509,8 @@ "metadata": {}, "outputs": [], "source": [ - "# your code here:\n" + "# your code here:\n", + "df.pivot_table(index='group', columns='smoke', values='age')" ] } ], @@ -412,7 +530,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.13.6" } }, "nbformat": 4,