NumPy

NumPy – huh, yeah – what's it good for?

NumPy introduces a new data structure: the array

An array is a regular, N-dimensional grid of data of the same type, typically numerical data

• Great for storing homogeneous data, where every element in the array has the same meaning. E.g. images, sound, time series

Efficient machine-native implementation

- Data is stored in a contiguous chunk of memory, using machine-native data types
- Separate metadata tells numpy how to interpret that memory as an array

Memory block storage

0 1 2 3 4 5 6 7 8		0	1	2	3	4	5	6	7	8
-------------------	--	---	---	---	---	---	---	---	---	---

int64

8 bytes

NumPy array metadata

dtype	int64		
ndim	2		
shape	(3, 3)		
strides	(24, 8)		

NumPy view

0	1	2
3	4	5
6	7	8

Is NumPy any better than a list-of-lists?

Is NumPy any better than a list-of-lists?

- The machine-nativeness of the data structure means that common operations and algorithms can be implemented with less per-element overhead, making them faster than a Python list-of-lists
- Faster in what sense?
 - Big-O complexity is the same. E.g., square matrix multiplication is still O(n³)*
 - It's not going to scale any better than list-of-lists
 - Much faster for fixed-size problems
 - This speed advantage strictly depends on operations being made in C and Fortran. Avoid Python for-loops and use existing NumPy and SciPy functionality!

Same data, different views

Memory block storage

0	1	2	3	4	5	6	7	8

int64 8 bytes

NumPy array metadata

dtype	int64
ndim	2
shape	(3, 3)
strides	(24, 8)

NumPy view

0	1	2
3	4	5
6	7	8

Same data, different views

Memory block storage

0	1	2	3	4	5	6	7	8

int64 8 bytes

NumPy array metadata

dtype	int64
ndim	1
shape	(9,)
strides	(8,)

O(1) operations in NumPy

Memory block

0	1	2	3	4	5	6	7	8	9	10	11	12

When NumPy can execute a command by just changing the metadata, it does.

The result is a **new view of the same data in memory**

NumPy operation

Χ

vun	1Py	arra	y m	eta	uata

ndim	2		
shape	(4, 3)		
strides	(24, 8)		

B.L	Г			
NU	mı	'V \	viev	N

0	1	2
3	4	5
6	7	8
9	10	11

x.ravel()

ndim	1
shape	(12,)
strides	(8,)

x.T

ndim	2
shape	(3, 4)
strides	(8, 24)

0	3	6	9
1	4	7	10
2	5	8	11

x.reshape((2, 6))

ndim	2
shape	(2, 6)
strides	(48, 8)

0	1	2	3	4	5
6	7	8	9	10	11

The golden rule of NumPy

Operations that can be executed by only changing the metadata return a "view " of the original data memory block

In all other cases, it creates a "copy" with a new data memory block

Views vs. copies in indexing operations

Memory block

0	1	2	3	4	5	6	7	8	9	10	11	12

NumPy operation

X

NumPy array metadata

dtype	int64
ndim	2
shape	(4, 3)
strides	(24, 8)

0	1	2	
3	4	5	
6	7	8	
9	10	11	

Slicing

x[::3, ::2]

dtype	
ndim	
shape	
strides	

Can this operation be done just by changing the metadata?

Views vs. copies in indexing operations

Memory block

0	1	2	3	4	5	6	7	8	9	10	11	12

NumPy operation

X

NumPy array metadata

dtype	int64
ndim	2
shape	(4, 3)
strides	(24, 8)

0	1	2
3	4	5
6	7	8
9	10	11

Slicing

x[::3, ::2]

dtype	int64
ndim	2
shape	(2, 2)
strides	(72, 16)

Can this operation be done just by changing the metadata?
YES!

Can it be done for all slicing operations?

Views vs. copies in indexing operations

Memory block

NumPy operation

NumPy array metadata

X

Slicing always returns a **view** of the original array

Slicing

x[::3, ::2]

dtype	int64
ndim	2
shape	(2, 2)
strides	(72, 16)

Can this operation be done just by changing the metadata?
YES!

Can it be done for all slicing operations?
YES!

13

Views vs. copies in indexing operations

Memory block

0	1	2	3	4	5	6	7	8	9	10	11	12

NumPy operation

X

NumPy array metadata

dtype	int64
ndim	2
shape	(4, 3)
strides	(24, 8)

0	1	2	
3	4	5	
6	7	8	
9	10	11	

Fancy indexing

dtype	
ndim	
shape	
strides	

1 10 8

Can this operation be done just by changing the metadata?

View vs copies in indexing operations

Memory block

NumPy operation

NumPy array metadata

X

Fancy indexing always returns a **copy** of the original array

Fancy indexing

dtype	int64
ndim	1
shape	(3,)
strides	???

Can this operation be done just by changing the metadata?
NO!

View or copy? Quiz

Exercise

exercises/numpy_view_or_copy/
view_or_copy_interactive.ipynb

Changing one view changes them all

Sept 2025, CC BY-SA 4.0 Data, v2.0

Changing one view changes them all

data	
dtype	int64
ndim	2
shape	(4, 3)
strides	(24, 8)

int64
2
(3, 4)
(8, 24)

(

y

Changing one view changes them all

Sept 2025, CC BY-SA 4.0 Data, v2.0

```
def robust_log(x, cte=1e-10):
    """ Compute the log of the elements of an array.

Values that are equal to 0.0 in `x` are substituted with a tiny constant `cte`
    to avoid a divide-by-zero warning, and `-inf` values in the output arrays.

x[x == 0] = cte
    return np.log(x)
```

```
def robust log(x, cte=1e-10):
    """ Compute the log of the elements of an array.
    Values that are equal to 0.0 in `x` are substituted with a tiny constant `cte`
    to avoid a divide-by-zero warning, and `-inf` values in the output arrays.
    x[x == 0] = cte
    return np.log(x)
      a = np.array([[0.3, 0.01], [0, 1]])
      print(a)
      [[0.3 0.01]
       [0. 1.]
      # Using the NumPy's log directly
      np.log(a)
      /tmp/ipykernel_50294/3282750587.py:2: RuntimeWarning: divide by zero encountered in log
        np.log(a)
      array([[-1.2039728 , -4.60517019],
                    -inf, 0. ]])
      # Our function handles values equal zero to return a small value
      robust_log(a)
      array([[ -1.2039728 , -4.60517019],
             [-23.02585093, 0.
```

Sept 2025, CC BY-SA 4.0 Data, v2.0 20

```
def robust log(x, cte=1e-10):
   """ Compute the log of the elements of an array.
   Values that are equal to 0.0 in `x` are substituted with a tiny constant `cte`
    to avoid a divide-by-zero warning, and `-inf` values in the output arrays.
    x[x == 0] = cte
    return np.log(x)
     a = np.array([[0.3, 0.01], [0, 1]])
     b = a[1, :] # A view of `a`
     print(b)
     [0. 1.]
     robust_log(b)
                                  1)
     array([-23.02585093, 0.
     b
                                                                   The input array has been modified!
     array([1.e-10, 1.e+00])
                                                                   ... and so have all other views
     а
                                                                   of the same data!
     array([[3.e-01, 1.e-02],
            [1.e-10, 1.e+00]])
```

Best practice: functions that take an array as an input should avoid modifying it in place! Always make a copy or be super extra clear in the docstring

```
def robust_log(x, cte=1e-10):
    """ Compute the log of the elements of an array.

Values that are equal to 0.0 in `x` are substituted with a tiny constant `cte`
    to avoid a divide-by-zero warning, and `-inf` values in the output arrays.

x = x.copy()
    x[x == 0] = cte
    return np.log(x)
```

NumPy views and copies summary

View

- There can be multiple views of the same memory block, interpreted as different arrays
- Slicing returns a view
- In-place operations on a view modify the memory block and all of its views

Copy

- When a copy of an array needs to be created, it allocates a separate memory block and associates it with new metadata
- Fancy indexing always returns copies
- A copy can be forced with .copy()

A special kind of view: broadcasting operations

Memory block

0	1	2	3	4	5	6	7	8

NumPy array metadata

int64	
2	
(4, 9)	
(0, 8)	
	2 (4, 9)

The shape says we have 4 rows and 9 columns

A stride of 0 means that for each new row, we don't move in memory

A special kind of view: broadcasting operations

Memory block

NumPy array metadata

dtype	int64
ndim	2
shape	(4, 9)
strides	(0, 8)

The shape says we have 4 rows and 9 columns

A stride of 0 means that for each new row, we don't move in memory As a result, we obtain a view with duplicated rows, without using extra memory!

NumPy view

0	1	2	3	4	5	6	7	8	
0	1	2	3	4	5	6	7	8	
0	1	2	3	4	5	6	7	8	
0	1	2	3	4	5	6	7	8	

NumPy uses broadcasting to perform operation on arrays of different shape without having to allocate extra memory

Broadcasting matching rule: dimensions are aligned to the right and match if they are equal, or equal to 1

You can always add a new dimensions to make things match

```
a = np.array([0, 10, 20, 30])
b = np.array([0, 2, 3])

a + b

ValueError
Cell In[4], line 1
---> 1 a + b

ValueError: operands could not be broadcast together with shapes (4,) (3,)
1D shape: (4,)

(4,) + (3,) -> ERROR!
```

Sept 2025, CC BY-SA 4.0 Data, v2.0

You can always add a new dimensions to make things match

```
a = np.array([0, 10, 20, 30]) 1D shape: (4,)

b = np.array([0, 2, 3]) 1D shape: (3,)
```

Add an extra dimension using np.newaxis to align them:

```
a[:, np.newaxis]
b[np.newaxis,:]
2D shape: (4, 1)
2D shape: (1, 3)

a[:, np.newaxis] + b[np.newaxis,:]
(4, 1) + (1, 3) -> (4, 3)
```

This also works (align right!):

```
a[:, np.newaxis] + b (4, 1) + (3,) \rightarrow (4, 3)
```

Broadcasting summary

 Broadcasting creates a view, and is an O(1) operation that does not require extra memory

- Rules of broadcasting
 - 1: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is *padded* with ones on its leading (left) side.
 - 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that dimension is stretched to match the other shape.
 - 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

Up next: Tabular Data

Fancy indexing in NumPy – reference slide

A[[2, 2, 1], [2, 0, 0]]

