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NumPy
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NumPy – huh, yeah – what’s it good for?

• NumPy introduces a new data structure: the array

• Great for storing homogeneous data, where every element in the 
array has the same meaning. E.g. images, sound, time series
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An array is a regular, N-dimensional grid of data 
of the same type, typically numerical data
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Efficient machine-native implementation 
• Data is stored in a contiguous chunk of memory, using machine-native data types
• Separate metadata tells numpy how to interpret that memory as an array
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0 1 2

3 4 5

6 7 8
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Is NumPy any better than a list-of-lists?
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Is NumPy any better than a list-of-lists?
• The machine-nativeness of the data structure means that common 

operations and algorithms can be implemented with less per-element 
overhead, making them faster than a Python list-of-lists
 
• Faster in what sense?
• Big-O complexity is the same. E.g., square matrix multiplication is still O(n³)*

• It’s not going to scale any better than list-of-lists
• Much faster for fixed-size problems
• This speed advantage strictly depends on operations being made in C and 

Fortran. Avoid Python for-loops and use existing NumPy and SciPy 
functionality!
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* The best matrix multiplication algorithm as of 2025 scales as O(n**2.371339). However, out-of-the-box 
NumPy packages usually use a Fortran library called OpenBLAS that implements a O(n**3) algorithm
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Same data, different views
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dtype int64

ndim 1

shape (9,)

strides (8,)

Same data, different views
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0 1 2 3 4 5 6 7 8

int64
8 bytes

Memory block storage

NumPy view
NumPy array metadata
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O(1) operations in NumPy
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NumPy view

0 1 2 3 4 5 6 7 8 9 10 11

0 3 6 9

1 4 7 10

2 5 8 11

0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

x.ravel()

NumPy operation

x.T

x

When NumPy can execute a 
command by just changing 

the metadata, it does.
The result is a new view of 
the same data in memory

ndim 1

shape (12,)

strides (8,)

NumPy array metadata

ndim 2

shape (3, 4)

strides (8, 24)

ndim 2

shape (4, 3)

strides (24, 8)

x.reshape((2, 6)) ndim 2

shape (2, 6)

strides (48, 8)

0 1 2 3 4 5

6 7 8 9 10 11
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The golden rule of NumPy
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Operations that can be executed by only changing the metadata 
return a “view “ of the original data memory block

In all other cases, it creates a “copy” with a new data memory block
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Views vs. copies in indexing operations
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Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

x[::3, ::2] 0 2

9 11

Can this operation be done just 
by changing the metadata?

dtype

ndim

shape

strides

Slicing
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Views vs. copies in indexing operations
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Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

x[::3, ::2] 0 2

9 11

dtype int64

ndim 2

shape (2, 2)

strides (72, 16)

Can it be done for all slicing 
operations?

Can this operation be done just 
by changing the metadata?

YES!

Slicing



Data, v2.0 12

Views vs. copies in indexing operations
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Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

x[::3, ::2] 0 2

9 11

dtype int64

ndim 2

shape (2, 2)

strides (72, 16)

Slicing always returns 
a view of the original array

Can it be done for all slicing 
operations?

YES!

Can this operation be done just 
by changing the metadata?

YES!

Slicing
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Views vs. copies in indexing operations
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0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

x[[0, 2, 3], [1, 2, 1]]
Can this operation be done just 

by changing the metadata?
dtype

ndim

shape

strides
row 

indices
column 
indices

1 10 8

Fancy indexing
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View vs copies in indexing operations
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0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

Can this operation be done just 
by changing the metadata?

NO!

dtype int64

ndim 1

shape (3,)

strides ???
row 

indices
column 
indices

1 10 8

Fancy indexing

x[[0, 2, 3], [1, 2, 1]]

Fancy indexing always returns 
a copy of the original array
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View or copy? Quiz
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Exercise
exercises/numpy_view_or_copy/
view_or_copy_interactive.ipynb
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Changing one view changes them all
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data

dtype int64
ndim 2
shape (4, 3)
strides (24, 8)

0 1 2 3 4 5 6 7 8 9 10 11 12

x y

data

dtype int64

ndim 2

shape (3, 4)

strides (8, 24)
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Changing one view changes them all
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data

dtype int64
ndim 2
shape (4, 3)
strides (24, 8)

0 1 2 3 4 5 6 7 8 9 10 11 12

x y

data

dtype int64

ndim 2

shape (3, 4)

strides (8, 24)



Data, v2.0 18

Changing one view changes them all
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data

dtype int64
ndim 2
shape (4, 3)
strides (24, 8)

13 1 2 3 4 5 6 7 8 9 10 11 12

data

dtype int64

ndim 2

shape (3, 4)

strides (8, 24)

x y
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Careful with your functions
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Careful with your functions
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Careful with your functions
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The input array has been modified!
… and so have all other views 
of the same data!
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Careful with your functions
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Best practice: functions that take an array as an input should avoid modifying it in place!
Always make a copy or be super extra clear in the docstring
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NumPy views and copies summary
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View
• There can be multiple views of the same memory block, interpreted as 

different arrays
• Slicing returns a view
• In-place operations on a view modify the memory block 

and all of its views

Copy
• When a copy of an array needs to be created, it allocates a separate 

memory block and associates it with new metadata
• Fancy indexing always returns copies
• A copy can be forced with .copy()
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A special kind of view: broadcasting operations
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0 1 2 3 4 5 6 7 8

Memory block

NumPy array metadata
dtype int64

ndim 2

shape (4, 9)

strides (0, 8)

A stride of 0 means 
that for each new 
row, we don’t move 
in memory

The shape says we 
have 4 rows and 9 
columns
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A special kind of view: broadcasting operations
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0 1 2 3 4 5 6 7 8

Memory block

NumPy viewNumPy array metadata
dtype int64

ndim 2

shape (4, 9)

strides (0, 8)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

A stride of 0 means 
that for each new 
row, we don’t move 
in memory

As a result, we obtain a view with 
duplicated rows, without using 
extra memory!

The shape says we 
have 4 rows and 9 
columns
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NumPy uses broadcasting to perform operation on arrays of 
different shape without having to allocate extra memory
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Broadcasting matching rule: dimensions are aligned to the right 
and match if they are equal, or equal to 1
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(4, 1) + (1, 3) -> (4, 3)

(4, 3) (4, 3)

(4, 3) (1, 3)

(4, 1) (1, 3)

(4, 3) + (4, 3) -> (4, 3)

(4, 3) + (1, 3) -> (4, 3)
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You can always add a new dimensions to make things match
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a = np.array([0, 10, 20, 30])
b = np.array([0, 2, 3])

1D shape: (4,)
1D shape: (3,)

a + b (4,) + (3,) -> ERROR!
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You can always add a new dimensions to make things match
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(4, 1) + (1, 3) -> (4, 3)

a = np.array([0, 10, 20, 30])
b = np.array([0, 2, 3])

1D shape: (4,)
1D shape: (3,)

a[:, np.newaxis]

Add an extra dimension using np.newaxis to align them:

2D shape: (4, 1)
b[np.newaxis, :] 2D shape: (1, 3)

a[:, np.newaxis] + b[np.newaxis, :]

This also works (align right!):
(4, 1) + (3,) -> (4, 3)a[:, np.newaxis] + b
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Broadcasting summary

• Broadcasting creates a view, and is an O(1) operation that does not 
require extra memory
• Rules of broadcasting
• 1: If the two arrays differ in their number of dimensions, the shape of the 

one with fewer dimensions is padded with ones on its leading (left) side.
• 2: If the shape of the two arrays does not match in any dimension, the array 

with shape equal to 1 in that dimension is stretched to match the other 
shape.
• 3: If in any dimension the sizes disagree and neither is equal to 1, an error is 

raised.
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Exercise
exercises/numpy_broadcasting/

broadcasting.ipynb
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Up next: Tabular Data
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Fancy indexing in NumPy – reference slide
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A[[2, 2, 1], [2, 0, 0]]


