
Data, v2.0 1Sept 2025, CC BY-SA 4.0

NumPy

Data, v2.0 2

NumPy – huh, yeah – what’s it good for?

• NumPy introduces a new data structure: the array

• Great for storing homogeneous data, where every element in the
array has the same meaning. E.g. images, sound, time series

Sept 2025, CC BY-SA 4.0

An array is a regular, N-dimensional grid of data
of the same type, typically numerical data

3

Efficient machine-native implementation
• Data is stored in a contiguous chunk of memory, using machine-native data types
• Separate metadata tells numpy how to interpret that memory as an array

Sept 2025, CC BY-SA 4.0 Data, v2.0

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block storage

0 1 2

3 4 5

6 7 8

NumPy view

NumPy array metadata

Data, v2.0 4

Is NumPy any better than a list-of-lists?

Sept 2025, CC BY-SA 4.0

Data, v2.0 5

Is NumPy any better than a list-of-lists?
• The machine-nativeness of the data structure means that common

operations and algorithms can be implemented with less per-element
overhead, making them faster than a Python list-of-lists

• Faster in what sense?
• Big-O complexity is the same. E.g., square matrix multiplication is still O(n³)*

• It’s not going to scale any better than list-of-lists
• Much faster for fixed-size problems
• This speed advantage strictly depends on operations being made in C and

Fortran. Avoid Python for-loops and use existing NumPy and SciPy
functionality!

Sept 2025, CC BY-SA 4.0

* The best matrix multiplication algorithm as of 2025 scales as O(n**2.371339). However, out-of-the-box
NumPy packages usually use a Fortran library called OpenBLAS that implements a O(n**3) algorithm

Data, v2.0 6

Same data, different views

Sept 2025, CC BY-SA 4.0

0 1 2 3 4 5 6 7 8

int64
8 bytes

dtype int64

ndim 2

shape (3, 3)

strides (24, 8)

Memory block storage

0 1 2

3 4 5

6 7 8

NumPy view

NumPy array metadata

Data, v2.0 7

dtype int64

ndim 1

shape (9,)

strides (8,)

Same data, different views

Sept 2025, CC BY-SA 4.0

0 1 2 3 4 5 6 7 8

int64
8 bytes

Memory block storage

NumPy view
NumPy array metadata

0 1 2 3 4 5 6 7 8

Data, v2.0 8

O(1) operations in NumPy

Sept 2025, CC BY-SA 4.0

NumPy view

0 1 2 3 4 5 6 7 8 9 10 11

0 3 6 9

1 4 7 10

2 5 8 11

0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

x.ravel()

NumPy operation

x.T

x

When NumPy can execute a
command by just changing

the metadata, it does.
The result is a new view of
the same data in memory

ndim 1

shape (12,)

strides (8,)

NumPy array metadata

ndim 2

shape (3, 4)

strides (8, 24)

ndim 2

shape (4, 3)

strides (24, 8)

x.reshape((2, 6)) ndim 2

shape (2, 6)

strides (48, 8)

0 1 2 3 4 5

6 7 8 9 10 11

Data, v2.0 9

The golden rule of NumPy

Sept 2025, CC BY-SA 4.0

Operations that can be executed by only changing the metadata
return a “view “ of the original data memory block

In all other cases, it creates a “copy” with a new data memory block

Data, v2.0 10

Views vs. copies in indexing operations

Sept 2025, CC BY-SA 4.0

0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

x[::3, ::2] 0 2

9 11

Can this operation be done just
by changing the metadata?

dtype

ndim

shape

strides

Slicing

Data, v2.0 11

Views vs. copies in indexing operations

Sept 2025, CC BY-SA 4.0

0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

x[::3, ::2] 0 2

9 11

dtype int64

ndim 2

shape (2, 2)

strides (72, 16)

Can it be done for all slicing
operations?

Can this operation be done just
by changing the metadata?

YES!

Slicing

Data, v2.0 12

Views vs. copies in indexing operations

Sept 2025, CC BY-SA 4.0

0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

x[::3, ::2] 0 2

9 11

dtype int64

ndim 2

shape (2, 2)

strides (72, 16)

Slicing always returns
a view of the original array

Can it be done for all slicing
operations?

YES!

Can this operation be done just
by changing the metadata?

YES!

Slicing

Data, v2.0 13

Views vs. copies in indexing operations

Sept 2025, CC BY-SA 4.0

0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

x[[0, 2, 3], [1, 2, 1]]
Can this operation be done just

by changing the metadata?
dtype

ndim

shape

strides
row

indices
column
indices

1 10 8

Fancy indexing

Data, v2.0 14

View vs copies in indexing operations

Sept 2025, CC BY-SA 4.0

0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory block

NumPy operation

x
NumPy array metadata
dtype int64

ndim 2

shape (4, 3)

strides (24, 8)

Can this operation be done just
by changing the metadata?

NO!

dtype int64

ndim 1

shape (3,)

strides ???
row

indices
column
indices

1 10 8

Fancy indexing

x[[0, 2, 3], [1, 2, 1]]

Fancy indexing always returns
a copy of the original array

Data, v2.0 15

View or copy? Quiz

Sept 2025, CC BY-SA 4.0

Exercise
exercises/numpy_view_or_copy/
view_or_copy_interactive.ipynb

Data, v2.0 16

Changing one view changes them all

Sept 2025, CC BY-SA 4.0

data

dtype int64
ndim 2
shape (4, 3)
strides (24, 8)

0 1 2 3 4 5 6 7 8 9 10 11 12

x y

data

dtype int64

ndim 2

shape (3, 4)

strides (8, 24)

Data, v2.0 17

Changing one view changes them all

Sept 2025, CC BY-SA 4.0

data

dtype int64
ndim 2
shape (4, 3)
strides (24, 8)

0 1 2 3 4 5 6 7 8 9 10 11 12

x y

data

dtype int64

ndim 2

shape (3, 4)

strides (8, 24)

Data, v2.0 18

Changing one view changes them all

Sept 2025, CC BY-SA 4.0

data

dtype int64
ndim 2
shape (4, 3)
strides (24, 8)

13 1 2 3 4 5 6 7 8 9 10 11 12

data

dtype int64

ndim 2

shape (3, 4)

strides (8, 24)

x y

Data, v2.0 19

Careful with your functions

Sept 2025, CC BY-SA 4.0

Data, v2.0 20

Careful with your functions

Sept 2025, CC BY-SA 4.0

Data, v2.0 21

Careful with your functions

Sept 2025, CC BY-SA 4.0

The input array has been modified!
… and so have all other views
of the same data!

Data, v2.0 22

Careful with your functions

Sept 2025, CC BY-SA 4.0

Best practice: functions that take an array as an input should avoid modifying it in place!
Always make a copy or be super extra clear in the docstring

Data, v2.0 23

NumPy views and copies summary

Sept 2025, CC BY-SA 4.0

View
• There can be multiple views of the same memory block, interpreted as

different arrays
• Slicing returns a view
• In-place operations on a view modify the memory block

and all of its views

Copy
• When a copy of an array needs to be created, it allocates a separate

memory block and associates it with new metadata
• Fancy indexing always returns copies
• A copy can be forced with .copy()

Data, v2.0 24

A special kind of view: broadcasting operations

Sept 2025, CC BY-SA 4.0

0 1 2 3 4 5 6 7 8

Memory block

NumPy array metadata
dtype int64

ndim 2

shape (4, 9)

strides (0, 8)

A stride of 0 means
that for each new
row, we don’t move
in memory

The shape says we
have 4 rows and 9
columns

Data, v2.0 25

A special kind of view: broadcasting operations

Sept 2025, CC BY-SA 4.0

0 1 2 3 4 5 6 7 8

Memory block

NumPy viewNumPy array metadata
dtype int64

ndim 2

shape (4, 9)

strides (0, 8)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

A stride of 0 means
that for each new
row, we don’t move
in memory

As a result, we obtain a view with
duplicated rows, without using
extra memory!

The shape says we
have 4 rows and 9
columns

Data, v2.0 26

NumPy uses broadcasting to perform operation on arrays of
different shape without having to allocate extra memory

Sept 2025, CC BY-SA 4.0

Data, v2.0 27

Broadcasting matching rule: dimensions are aligned to the right
and match if they are equal, or equal to 1

Sept 2025, CC BY-SA 4.0

(4, 1) + (1, 3) -> (4, 3)

(4, 3) (4, 3)

(4, 3) (1, 3)

(4, 1) (1, 3)

(4, 3) + (4, 3) -> (4, 3)

(4, 3) + (1, 3) -> (4, 3)

Data, v2.0 28

You can always add a new dimensions to make things match

Sept 2025, CC BY-SA 4.0

a = np.array([0, 10, 20, 30])
b = np.array([0, 2, 3])

1D shape: (4,)
1D shape: (3,)

a + b (4,) + (3,) -> ERROR!

Data, v2.0 29

You can always add a new dimensions to make things match

Sept 2025, CC BY-SA 4.0

(4, 1) + (1, 3) -> (4, 3)

a = np.array([0, 10, 20, 30])
b = np.array([0, 2, 3])

1D shape: (4,)
1D shape: (3,)

a[:, np.newaxis]

Add an extra dimension using np.newaxis to align them:

2D shape: (4, 1)
b[np.newaxis, :] 2D shape: (1, 3)

a[:, np.newaxis] + b[np.newaxis, :]

This also works (align right!):
(4, 1) + (3,) -> (4, 3)a[:, np.newaxis] + b

Data, v2.0 30

Broadcasting summary

• Broadcasting creates a view, and is an O(1) operation that does not
require extra memory
• Rules of broadcasting
• 1: If the two arrays differ in their number of dimensions, the shape of the

one with fewer dimensions is padded with ones on its leading (left) side.
• 2: If the shape of the two arrays does not match in any dimension, the array

with shape equal to 1 in that dimension is stretched to match the other
shape.
• 3: If in any dimension the sizes disagree and neither is equal to 1, an error is

raised.

Sept 2025, CC BY-SA 4.0

Exercise
exercises/numpy_broadcasting/

broadcasting.ipynb

Data, v2.0 31

Up next: Tabular Data

Sept 2025, CC BY-SA 4.0

Data, v2.0 32Sept 2025, CC BY-SA 4.0

Data, v2.0 33

Fancy indexing in NumPy – reference slide

Sept 2025, CC BY-SA 4.0

A[[2, 2, 1], [2, 0, 0]]

