fix larger than memory error

This commit is contained in:
Aitor Morales-Gregorio 2025-09-26 08:58:03 +02:00
parent 895ba73144
commit eae8e29f47
3 changed files with 17 additions and 13 deletions

View file

@ -3,11 +3,11 @@ import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patheffects as PathEffects
N_processes = 5
N_threads = 5
N_processes = 16
N_threads = 16
# Load measured timings
times = np.empty((N_processes, N_threads))
times = np.ones((N_processes, N_threads))
for fname in os.listdir('timings'):
values = open(f'timings/{fname}').read().split()
n_processes = int(values[0])
@ -25,6 +25,7 @@ fig_time.colorbar(im, ax=axs_time, label='Measured computation time (s)')
""" Plot speedup """
workers = np.arange(N_processes + 1)[:, None] * np.arange(N_threads + 1)
speedup = times[0, 0] / times
speedup[times == 0] = np.nan
fig_speedup, axs_speedup = plt.subplots()
im = axs_speedup.imshow(speedup.T, origin='lower')
@ -36,13 +37,13 @@ for axs, data in zip([axs_time, axs_speedup], [times, speedup]):
axs.set_xlabel('# processes')
axs.set_ylabel('# threads')
axs.set_xticks(np.arange(N_processes))
axs.set_xticklabels(np.arange(N_processes)+1)
axs.set_xticklabels(np.arange(N_processes)+1, fontsize=6)
axs.set_yticks(np.arange(N_threads))
axs.set_yticklabels(np.arange(N_threads)+1)
axs.set_yticklabels(np.arange(N_threads)+1, fontsize=6)
for i in range(N_processes):
for j in range(N_threads):
txt = axs.text(i, j, f'{data[i, j]:.2f}', fontsize=10, color='w',
txt = axs.text(i, j, f'{data[i, j]:.2f}', fontsize=4, color='w',
ha='center', va='center', fontweight='bold')
txt.set_path_effects([PathEffects.withStroke(linewidth=0.5, foreground='k')])
axs.spines[['right', 'top']].set_visible(False)

View file

@ -6,9 +6,12 @@ import time
def process_image(input_tuple):
fname, A = input_tuple
if len(A.shape) > 2:
A = A.mean(axis=-1) # Take average color
A = A[::5, ::5] # Downsample
n_threads = os.getenv('OMP_NUM_THREADS', '(unset)')
print(f"Worker {fname=} OMP_NUM_THREADS={n_threads}", flush=True)
# Decompose image
U, S, Vh = np.linalg.svd(A)
@ -57,10 +60,10 @@ if __name__ == '__main__':
new_images = p.map(process_image, image_arrays)
elapsed_time = time.time() - start_time
# I/O save the processed images
for im, fname in zip(new_images, fnames):
im = Image.fromarray(im)
im.save(fname.replace('images', 'processed_images'))
# # I/O save the processed images
# for im, fname in zip(new_images, fnames):
# im = Image.fromarray(im)
# im.save(fname.replace('images', 'processed_images'))
print(f'{n_processes} processes and {n_threads} threads and {len(fnames)} jobs: {elapsed_time}\n',
flush=True)

View file

@ -1,8 +1,8 @@
# This is bash
# It runs the python script multiple times with different arguments
for i in {1..5} # Number of processes
for i in {1..16} # Number of processes
do
for j in {1..5} # Number of threads
for j in {1..16} # Number of threads
do
python process_images.py $i $j images/*
done