.
This commit is contained in:
parent
eae8e29f47
commit
f03b7e7a66
2 changed files with 30 additions and 18 deletions
|
@ -5,28 +5,29 @@ from datetime import datetime
|
|||
import time
|
||||
|
||||
# Timestamp that will be put in the file name
|
||||
timestamp = datetime.now().strftime("%H%M%S%f")
|
||||
|
||||
# Get the environment variable for threads
|
||||
threads = os.getenv('OMP_NUM_THREADS')
|
||||
for threads in range(1,12):
|
||||
for _ in range(3):
|
||||
timestamp = datetime.now().strftime("%H%M%S%f")
|
||||
|
||||
# A relatively large matrix to work on
|
||||
n = 5_000
|
||||
x = np.random.random(size=(n, n))
|
||||
# A relatively large matrix to work on
|
||||
n = 5_000
|
||||
x = np.random.random(size=(n, n))
|
||||
|
||||
print(f"We are executed with OMP_NUM_THREADS={threads} for {n=}")
|
||||
print(f"We are executed with OMP_NUM_THREADS={threads} for {n=}")
|
||||
|
||||
# Measure the time required for matrix multiplication
|
||||
start_time = time.time()
|
||||
y = x @ x # The heavy compute
|
||||
elapsed_time = time.time() - start_time
|
||||
# Measure the time required for matrix multiplication
|
||||
start_time = time.time()
|
||||
y = x @ x # The heavy compute
|
||||
elapsed_time = time.time() - start_time
|
||||
|
||||
print(f'Time used for matrix multiplication: {elapsed_time:.2f} s')
|
||||
print(f'Time used for matrix multiplication: {elapsed_time:.2f} s')
|
||||
|
||||
# Check if timings folder exists
|
||||
if not os.path.isdir('timings/'):
|
||||
os.mkdir('timings')
|
||||
# Check if timings folder exists
|
||||
if not os.path.isdir('timings/'):
|
||||
os.mkdir('timings')
|
||||
|
||||
# IO: Save the timing to a unique txt file
|
||||
with open(f'timings/{threads}_threads_t{timestamp}.txt', 'w') as file:
|
||||
print(f'{threads},{elapsed_time:.6f}', file=file)
|
||||
# IO: Save the timing to a unique txt file
|
||||
with open(f'timings/{threads}_threads_t{timestamp}.txt', 'w') as file:
|
||||
print(f'{threads},{elapsed_time:.6f}', file=file)
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
# IO: This loads the timings for you
|
||||
threads, timings = [], []
|
||||
|
@ -11,13 +12,23 @@ for file in os.listdir('timings'):
|
|||
timings.append(float(t))
|
||||
threads = np.array(threads)
|
||||
timings = np.array(timings)
|
||||
dat = {'timings': timings, 'threads': threads}
|
||||
|
||||
print('This is the data I loaded: threads =', threads, ', timings =',timings)
|
||||
data = pd.DataFrame(dat)
|
||||
|
||||
averages = data.groupby('threads').aggregate(['mean','std'])
|
||||
averages.to_csv('data.csv')
|
||||
fig, axs = plt.subplots()
|
||||
|
||||
# CREATE YOUR PLOT HERE
|
||||
# Remember to label your axis
|
||||
# Feel free to make it pretty
|
||||
means = averages['timings']['mean']
|
||||
stds = averages['timings']['std']
|
||||
|
||||
axs.plot(averages.index, means)
|
||||
axs.fill_between(averages.index, means-stds, means+stds, alpha=0.3)
|
||||
axs.set_xlabel('Num threads')
|
||||
axs.set_ylabel('Time (s)')
|
||||
plt.show()
|
||||
plt.savefig('threads_v_timings.png', dpi=300)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue