

Parallel Python
Aitor Morales-Gregorio
Zbigniew Jędrzejewski-Szmek

ASPP 2025, Plovdiv
Fork/clone the repo now!

Outline

● Processes, threads and THE GIL

● Hands-on investigations of embarrassingly parallel problems

A. Multithreading with NumPy

B. The multiprocessing package

C. Blending processes and threads

● Going further

● Wrap-up

Exercise: brainstorm
Why do we parallelize?

Talk to your partner and come up with three practical examples of where
parallelization could be beneficial (in your work or another application).

Exercise: brainstorm
Why do we parallelize?

Talk to your partner and come up with three practical examples of where
parallelization could be beneficial (in your work or another application).

In short, two reasons why:

● Speed up computations.
● Process “big” things.

As for the “how”...we’ll come back to that later.

Processes, threads and the GIL

Kitchen-2-Computer analogy Workstation
Includes chef, tiny

countertop and tools

Big Countertop
temporarily holds things

Large Pantry
across the street

Transport
servants
Carry stuff

Customer
Gives orders

Kitchen-2-Computer analogy Workstation
Includes chef, tiny

countertop and tools

Big Countertop
temporarily holds things

Large Pantry
across the street

Transport
servants
Carry stuff

Customer
Gives orders

Talk to your partner:
What is what?

The шопска салата program.
We need to make a single dish:
шопска салата.

This requires:
1. Fetch vegetables from pantry
2. Wash vegetables
3. Fetch cheese from pantry
4. Grate cheese
5. Chop vegetables
6. Combine veggies and cheese
7. Place salad in the pantry

The шопска салата program.
We need to make a single dish:
шопска салата.

This requires:
1. Fetch vegetables from pantry
2. Wash vegetables
3. Fetch cheese from pantry
4. Grate cheese
5. Chop vegetables
6. Combine veggies and cheese
7. Place salad in the pantry

Talk to your partner:
How can we make шопска салата faster?

Without kitchen renovations

Yay! We have just designed a

multi-threaded program

The restaurant owner made
the kitchen larger!

Workstation #1 Workstation #2

Countertop (memory)

The restaurant owner made
the kitchen larger!

Workstation #1 Workstation #2

Countertop (memory)

Problem #1:
Memory corruption

Problem #2:
Race conditions

Race conditions

(Live coding)

Solution #1: Protect the memory

Workstation #1 Workstation #2

Countertop (memory)Process #1 #2

Multi-processing:
Each process gets assigned
private memory, other processes
cannot read or write from it*, if they
try there will be an error
(Segmentation Fault)

Who does this?
The Operating System (OS)

*usually

* A mutual exclusion (mutex) lock.
* Within the Python process, only 1 thread is
allowed to execute pure-Python code in a given
instance.
* The lock is acquired and released by threads,
approximately every 100 bytecode instructions.
Also released in other cases, e.g., I/O.

Python’s solution: The Global Interpreter Lock (GIL)
CPythonCPython

* A mutual exclusion (mutex) lock.
* Within the Python process, only 1 thread is
allowed to execute pure-Python code in a given
instance.
* The lock is acquired and released by threads,
approximately every 100 bytecode instructions.
Also released in other cases, e.g., I/O.

Python’s solution: The Global Interpreter Lock (GIL)

Hypothesize with your partner:
NumPy can (and by default does) run code with
multiple threads in parallel. How is this possible?

CPythonCPython

NumPy’s trick
NumPy interfaces with non-Python

libraries that, by default, use as
many threads as you have cores.

In other words, it is many
threads disguised as one!

Process
* List of instructions, i.e. an instance of some program
* Has private memory
* Can be made up of one or more threads
* Is not a physical part of the computer, it is defined by the rules of the OS

Thread
* Some instructions from the program (all instructions if single-threaded)

* Always part of a process
* Shares memory with other threads of the same process

Processes and threads do not run on a specific CPU,
the OS will allocate them and can move them mid-run

To wrap things up…a pop quiz!

On your pair computer, please navigate to
play.blooket.com and enter game pin

Outline

● Processes, threads and THE GIL ✅

● Hands-on investigations of embarrassingly parallel problems

A. Multithreading with NumPy

B. The multiprocessing package

C. Blending processes and threads

● Going further

● Wrap-up

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

