from numpy.testing import assert_allclose import pytest from logistic import f, iterate_f @pytest.mark.parametrize('x,r,expected', [(0, 1.1, 0),(1, 3.7, 0)]) def test_f_corner_cases(x, r, expected): # Test cases are (x, r, expected) result = f(x, r) assert_allclose(result, expected) # Hands on 1 #Add a new test for these generic cases using the for-loop pattern: # x=0.1, r=2.2 => f(x, r)=0.198 # x=0.2, r=3.4 => f(x, r)=0.544 # x=0.5, r=2 => f(x, r)=0.5 def test_f_normal_cases(): cases = [ (.1, 2.2, .198), (.2, 3.4, .544), (.5, 2, .5), ] for x, r, expected in cases: result = f(x, r) assert_allclose(result, expected) # Hands on 2: # parametrize the above test using @pytest.mark.parametrize # Hands on 3 # Implement a function iterate_f that runs f for it iterations. Write tests for the following cases: # x=0.1, r=2.2, it=1 => iterate_f(it, x, r)=[0.1, 0.198] # x=0.2, r=3.4, it=4 => iterate_f(it, x, r)=[0.2, 0.544, 0.843418, 0.449019, 0.841163] # x=0.5, r=2, it=3 => iterate_f(it, x, r)=[0.5, 0.5, 0.5] @pytest.mark.parametrize('x,r,it,expected', [ (0.1, 2.2, 1, [0.1, 0.198]), (0.2, 3.4, 4, [0.2, 0.544, 0.843418, 0.449019, 0.841163]), (0.5, 2, 3, [0.5, 0.5, 0.5, 0.5]), ]) def test_iterate_f(x, r, it, expected): result = iterate_f(it, x, r) assert_allclose(result, expected, rtol=1e-06)