228 lines
4.5 KiB
Plaintext
228 lines
4.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "560f48cd",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Exercise: Have a look at the neural data using Pandas"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "f7777604",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"# Set some Pandas options: maximum number of rows/columns it's going to display\n",
|
|
"pd.set_option('display.max_rows', 1000)\n",
|
|
"pd.set_option('display.max_columns', 100)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "6494fb41",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Load electrophysiology data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "9ca3bec6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df = pd.read_csv('../../data/QC_passed_2024-07-04_collected.csv')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0d78a63e",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 1. How many rows/columns does the data set have?"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4b68e5a6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0fab635e",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 2. Display the first 5 rows of the DataFrame"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4adcd5bf",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "deecdfa0",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 3. Display the names and dtypes of all the columns"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "64df567c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "411f4228",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 4. Display the unique values of the `high K concentration` and of the `treatment` columns"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b90ce541",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1e395e8d",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 5. Display the main statistics of the `max_spikes` column"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e2b86159",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c8c9f6b2",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 6. Show all the rows where the max number of spikes is larger than 50"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c449e9ff",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ce9ff32b",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 7. Display the main statistics of `'max_spikes'`, for the rows where `high K concentration` is `8 mM` and `15 mM` (separately)\n",
|
|
"\n",
|
|
"Are the distributions any different?"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8b84faa2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8b2d1c2b",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 8. Display the statistics of `max_spikes` when `high K concentration` is `8 mM`, and the maximum number of spikes is <= 100\n",
|
|
"\n",
|
|
"Does that change your conclusion?"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1201f7d1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "6dbbf6c8",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 9. Transform the `high K concentration` column into a numerical column\n",
|
|
"\n",
|
|
"a) Discard the last three characters of the columns (`' mM'`)\n",
|
|
"\n",
|
|
"b) Use `.astype(float)` to convert to floating point numbers\n",
|
|
"\n",
|
|
"c) Save the result in a column `K (mM)`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1cf5c15d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "ecc0cad1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|