2024-heraklion-scientific-p.../code_snippets/walker_initializers.ipynb
2024-08-27 15:52:41 +03:00

288 lines
9.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2022-09-02T11:13:12.648377Z",
"start_time": "2022-09-02T11:13:12.165387Z"
},
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2022-09-02T11:14:10.246402Z",
"start_time": "2022-09-02T11:14:10.235135Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"class Walker:\n",
" \"\"\" The Walker knows how to walk at random on a context map. \"\"\"\n",
"\n",
" def __init__(self, sigma_i, sigma_j, size, map_type='flat'):\n",
" self.sigma_i = sigma_i\n",
" self.sigma_j = sigma_j\n",
" self.size = size\n",
"\n",
" if map_type == 'flat':\n",
" context_map = np.ones((size, size))\n",
" elif map_type == 'hills':\n",
" grid_ii, grid_jj = np.mgrid[0:size, 0:size]\n",
" i_waves = np.sin(grid_ii / 130) + np.sin(grid_ii / 10)\n",
" i_waves /= i_waves.max()\n",
" j_waves = np.sin(grid_jj / 100) + np.sin(grid_jj / 50) + \\\n",
" np.sin(grid_jj / 10)\n",
" j_waves /= j_waves.max()\n",
" context_map = j_waves + i_waves\n",
" elif map_type == 'labyrinth':\n",
" context_map = np.ones((size, size))\n",
" context_map[50:100, 50:60] = 0\n",
" context_map[20:89, 80:90] = 0\n",
" context_map[90:120, 0:10] = 0\n",
" context_map[120:size, 30:40] = 0\n",
" context_map[180:190, 50:60] = 0\n",
"\n",
" context_map[50:60, 50:200] = 0\n",
" context_map[179:189, 80:130] = 0\n",
" context_map[110:120, 0:190] = 0\n",
" context_map[120:size, 30:40] = 0\n",
" context_map[180:190, 50:60] = 0\n",
" context_map /= context_map.sum()\n",
" self.context_map = context_map\n",
"\n",
" # Pre-compute a 2D grid of coordinates for efficiency\n",
" self._grid_ii, self._grid_jj = np.mgrid[0:size, 0:size]\n",
"\n",
"walker = Walker(sigma_i=3, sigma_j=4, size=200, map_type='hills')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2022-09-02T11:15:44.357965Z",
"start_time": "2022-09-02T11:15:44.351558Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"class Walker:\n",
" \"\"\" The Walker knows how to walk at random on a context map. \"\"\"\n",
"\n",
" def __init__(self, sigma_i, sigma_j, size, context_map):\n",
" self.sigma_i = sigma_i\n",
" self.sigma_j = sigma_j\n",
" self.size = size\n",
" self.context_map = context_map\n",
" # Pre-compute a 2D grid of coordinates for efficiency\n",
" self._grid_ii, self._grid_jj = np.mgrid[0:size, 0:size]\n",
"\n",
" @classmethod\n",
" def from_context_map_type(cls, sigma_i, sigma_j, size, map_type):\n",
" \"\"\" Create an instance of Walker with a context map defined by type.\"\"\"\n",
" if map_type == 'flat':\n",
" context_map = np.ones((size, size))\n",
" elif map_type == 'hills':\n",
" grid_ii, grid_jj = np.mgrid[0:size, 0:size]\n",
" i_waves = np.sin(grid_ii / 130) + np.sin(grid_ii / 10)\n",
" i_waves /= i_waves.max()\n",
" j_waves = np.sin(grid_jj / 100) + np.sin(grid_jj / 50) +\\\n",
" np.sin(grid_jj / 10)\n",
" j_waves /= j_waves.max()\n",
" context_map = j_waves + i_waves\n",
" elif map_type == 'labyrinth':\n",
" context_map = np.ones((size, size))\n",
" context_map[50:100, 50:60] = 0\n",
" context_map[20:89, 80:90] = 0\n",
" context_map[90:120, 0:10] = 0\n",
" context_map[120:size, 30:40] = 0\n",
" context_map[180:190, 50:60] = 0\n",
"\n",
" context_map[50:60, 50:200] = 0\n",
" context_map[179:189, 80:130] = 0\n",
" context_map[110:120, 0:190] = 0\n",
" context_map[120:size, 30:40] = 0\n",
" context_map[180:190, 50:60] = 0\n",
"\n",
" context_map /= context_map.sum()\n",
" return cls(sigma_i, sigma_j, size, context_map)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2022-09-02T11:15:49.092194Z",
"start_time": "2022-09-02T11:15:49.086575Z"
},
"collapsed": true
},
"outputs": [],
"source": [
"walker = Walker.from_context_map_type(sigma_i=3, sigma_j=4, size=200, map_type='hills')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2022-09-02T11:19:37.723607Z",
"start_time": "2022-09-02T11:19:37.717518Z"
},
"collapsed": true
},
"outputs": [],
"source": [
"def flat_context_map_builder(size):\n",
" \"\"\" A context map where all positions are equally likely. \"\"\"\n",
" return np.ones((size, size))\n",
"\n",
"\n",
"def hills_context_map_builder(size):\n",
" \"\"\" A context map with bumps and valleys. \"\"\"\n",
" grid_ii, grid_jj = np.mgrid[0:size, 0:size]\n",
" i_waves = np.sin(grid_ii / 130) + np.sin(grid_ii / 10)\n",
" i_waves /= i_waves.max()\n",
" j_waves = np.sin(grid_jj / 100) + np.sin(grid_jj / 50) + \\\n",
" np.sin(grid_jj / 10)\n",
" j_waves /= j_waves.max()\n",
" context_map = j_waves + i_waves\n",
" return context_map\n",
"\n",
"\n",
"def labyrinth_context_map_builder(size):\n",
" \"\"\" A context map that looks like a labyrinth. \"\"\"\n",
" context_map = np.ones((size, size))\n",
" context_map[50:100, 50:60] = 0\n",
" context_map[20:89, 80:90] = 0\n",
" context_map[90:120, 0:10] = 0\n",
" context_map[120:size, 30:40] = 0\n",
" context_map[180:190, 50:60] = 0\n",
"\n",
" context_map[50:60, 50:200] = 0\n",
" context_map[179:189, 80:130] = 0\n",
" context_map[110:120, 0:190] = 0\n",
" context_map[120:size, 30:40] = 0\n",
" context_map[180:190, 50:60] = 0\n",
"\n",
" return context_map"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"end_time": "2022-09-02T11:20:25.815725Z",
"start_time": "2022-09-02T11:20:25.811489Z"
},
"collapsed": true
},
"outputs": [],
"source": [
"class Walker:\n",
"\n",
" def __init__(self, sigma_i, sigma_j, size, context_map):\n",
" self.sigma_i = sigma_i\n",
" self.sigma_j = sigma_j\n",
" self.size = size\n",
" self.context_map = context_map\n",
" # Pre-compute a 2D grid of coordinates for efficiency\n",
" self._grid_ii, self._grid_jj = np.mgrid[0:size, 0:size]\n",
"\n",
" @classmethod\n",
" def from_context_map_builder(cls, sigma_i, sigma_j, size, context_map_builder):\n",
" \"\"\"Initialize the context map from an external builder.\n",
"\n",
" `builder` is a callable that takes a `size` as input parameter\n",
" and outputs a `size` x `size` numpy array of positive values.\n",
" \"\"\"\n",
" context_map = context_map_builder(size)\n",
" context_map /= context_map.sum()\n",
" return cls(sigma_i, sigma_j, size, context_map)\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2022-09-02T11:20:26.367914Z",
"start_time": "2022-09-02T11:20:26.362287Z"
},
"collapsed": true
},
"outputs": [],
"source": [
"walker = Walker.from_context_map_builder(\n",
" sigma_i=3, \n",
" sigma_j=4, \n",
" size=200, \n",
" context_map_builder=hills_context_map_builder,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python [conda env:bog]",
"language": "python",
"name": "conda-env-bog-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
},
"toc": {
"nav_menu": {
"height": "12px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}