213 lines
5.8 KiB
Text
213 lines
5.8 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-03-04T09:40:28.904Z",
|
|
"iopub.status.busy": "2024-03-04T09:40:28.896Z",
|
|
"iopub.status.idle": "2024-03-04T09:40:28.978Z",
|
|
"shell.execute_reply": "2024-03-04T09:40:28.967Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-03-04T10:02:39.062Z",
|
|
"iopub.status.busy": "2024-03-04T10:02:39.057Z",
|
|
"iopub.status.idle": "2024-03-04T10:02:39.068Z",
|
|
"shell.execute_reply": "2024-03-04T10:02:39.071Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"n_series = 32\n",
|
|
"len_one_series = 5*2**20\n",
|
|
"time_series = np.random.rand(n_series, len_one_series)\n",
|
|
"gap = 16*2**10"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-03-04T10:02:41.027Z",
|
|
"iopub.status.busy": "2024-03-04T10:02:41.020Z",
|
|
"iopub.status.idle": "2024-03-04T10:02:41.036Z",
|
|
"shell.execute_reply": "2024-03-04T10:02:41.040Z"
|
|
},
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(f'Size of one time series: {int(time_series[0].nbytes/2**20)} M')\n",
|
|
"print(f'Size of collection: {int(time_series.nbytes/2**20)} M')\n",
|
|
"print(f'Gap size: {int(gap*8/2**10)} K')\n",
|
|
"print(f'Gapped series size: {int(time_series[0, ::gap].nbytes/2**10)} K')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The following function implements an approximation of a power series of every `gap` value in our time series.\n",
|
|
"\n",
|
|
"If we define one time series of length `N` to be:\n",
|
|
"\n",
|
|
"$[x_0, x_1, x_2, ..., x_N]$,\n",
|
|
"\n",
|
|
"then the \"gapped\" series with `gap=g` is:\n",
|
|
"\n",
|
|
"$[x_0, x_g, x_{2g}, ..., x_{N/g}]$,\n",
|
|
"\n",
|
|
"where $N/g$ is the number of gaps.\n",
|
|
"\n",
|
|
"The approximation of the power series up to power `30` for our \"gapped\" series is defined as:\n",
|
|
"\n",
|
|
"$$\\mathbf{P} = \\sum_{p=0}^{30} \\sum_i x_i^{p} = \\sum_i x_i^0 + \\sum_i x_i^1 + \\sum_i x_i^2 + ... + \\sum_i x_i^{30} $$\n",
|
|
"\n",
|
|
"where $i \\in [0, g, 2g, ..., N/g]$"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-03-04T10:06:08.461Z",
|
|
"iopub.status.busy": "2024-03-04T10:06:08.459Z",
|
|
"iopub.status.idle": "2024-03-04T10:06:08.466Z",
|
|
"shell.execute_reply": "2024-03-04T10:06:08.468Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# compute an approximation of a power series for a collection of gapped timeseries\n",
|
|
"def power(time_series, P, gap):\n",
|
|
" for row in range(time_series.shape[0]):\n",
|
|
" for pwr in range(30):\n",
|
|
" P[row] += (time_series[row, ::gap]**pwr).sum()\n",
|
|
" return P\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Challenge\n",
|
|
"- Can you improve on the above implementation of the `power` function?\n",
|
|
"- Change the following `power_improved` function and see what you can do\n",
|
|
"- **Remember**: you can't change any other cell in this notebook!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-03-04T10:06:08.461Z",
|
|
"iopub.status.busy": "2024-03-04T10:06:08.459Z",
|
|
"iopub.status.idle": "2024-03-04T10:06:08.466Z",
|
|
"shell.execute_reply": "2024-03-04T10:06:08.468Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def power_improved(time_series, P, gap):\n",
|
|
" for row in range(time_series.shape[0]):\n",
|
|
" for pwr in range(30):\n",
|
|
" P[row] += (time_series[row, ::gap]**pwr).sum()\n",
|
|
" return P"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# verify that they yield the same results\n",
|
|
"P = np.zeros(n_series, dtype='float64')\n",
|
|
"out1 = power(time_series, P, gap)\n",
|
|
"P = np.zeros(n_series, dtype='float64')\n",
|
|
"out2 = power_improved(time_series, P, gap)\n",
|
|
"np.testing.assert_allclose(out1, out2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-03-04T10:06:14.959Z",
|
|
"iopub.status.busy": "2024-03-04T10:06:14.956Z",
|
|
"iopub.status.idle": "2024-03-04T10:06:17.437Z",
|
|
"shell.execute_reply": "2024-03-04T10:06:17.443Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"P = np.zeros(n_series, dtype='float64')\n",
|
|
"%timeit power(time_series, P, gap)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-03-04T10:06:20.056Z",
|
|
"iopub.status.busy": "2024-03-04T10:06:20.053Z",
|
|
"iopub.status.idle": "2024-03-04T10:06:21.695Z",
|
|
"shell.execute_reply": "2024-03-04T10:06:21.700Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"P = np.zeros(n_series, dtype='float64')\n",
|
|
"%timeit power_improved(time_series, P, gap)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.13.5"
|
|
},
|
|
"nteract": {
|
|
"version": "0.28.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|